Using the methods of scanning and transmission electron microscopy, the features of the structural-phase state of a vanadium alloy of the V-Cr-Ta-Zr system after a combined treatment, which consisted in cyclic alternation of thermomechanical and chemical-heat treatments, were studied. The values of yield strength and ductility of the V-Cr-Ta-Zr alloy were determined, depending on the stabilization and test temperatures. It was established that, after the combined treatment, the structural-phase state of the V-Cr-Ta-Zr alloy was composite, in which the joint implementation of dispersion and substructural strengthening ensured the formation of a gradient grain structure with a polygonal state, the elements of which were fixed by nanosized ZrO particles characterized by a high thermal stability.
View Article and Find Full Text PDFIn this paper, the structural characteristics of a W-Ta-Mo-Nb-V-Cr-Zr-Ti non-equiatomic refractory metal alloy obtained by spark plasma sintering (SPS) of a high-energy ball-milled powder mixture are reported. High-energy ball milling resulted in the formation of particle agglomerates ranging from several tens to several hundreds of micrometers. These agglomerates were composed of micrometer and submicrometer particles.
View Article and Find Full Text PDF