Publications by authors named "Konstantin Schneider"

Microbial communities have long been observed in oil reservoirs, where the subsurface conditions are major drivers shaping their structure and functions. Furthermore, anthropogenic activities such as water flooding during oil production can affect microbial activities and community compositions in oil reservoirs through the injection of recycled produced water, often associated with biocides. However, it is still unclear to what extent the introduced chemicals and microbes influence the metabolic potential of the subsurface microbiome.

View Article and Find Full Text PDF

Melatonin is a commercially attractive tryptophan-derived hormone. Here we describe a bioprocess for the production of melatonin using to high titers. The first engineered strain produced 0.

View Article and Find Full Text PDF

Obligate aerobic organisms rely on a functional electron transport chain for energy conservation and NADH oxidation. Because of this essential requirement, the genes of this pathway are likely constitutively and highly expressed to avoid a cofactor imbalance and energy shortage under fluctuating environmental conditions. We here investigated the essentiality of the three NADH dehydrogenases of the respiratory chain of the obligate aerobe VLB120 and the impact of the knockouts of corresponding genes on its physiology and metabolism.

View Article and Find Full Text PDF

Promoters are key components of cell factory design, allowing precise expression of genes in a heterologous pathway. Several commonly used promoters in yeast cell factories belong to glycolytic genes, highly expressed in actively growing yeast when glucose is used as a carbon source. However, their expression can be suboptimal when alternate carbon sources are used, or if there is a need to decouple growth from production.

View Article and Find Full Text PDF

Background: The physiological characterization of microorganisms provides valuable information for bioprocess development. Chemostat cultivations are a powerful tool for this purpose, as they allow defined changes to one single parameter at a time, which is most commonly the growth rate. The subsequent establishment of a steady state then permits constant variables enabling the acquisition of reproducible data sets for comparing microbial performance under different conditions.

View Article and Find Full Text PDF

We present a selection design that couples S-adenosylmethionine-dependent methylation to growth. We demonstrate its use in improving the enzyme activities of not only N-type and O-type methyltransferases by 2-fold but also an acetyltransferase of another enzyme category when linked to a methylation pathway in Escherichia coli using adaptive laboratory evolution. We also demonstrate its application for drug discovery using a catechol O-methyltransferase and its inhibitors entacapone and tolcapone.

View Article and Find Full Text PDF

Absolute quantification of free intracellular metabolites is a valuable tool in both pathway discovery and metabolic engineering. In this study, we conducted a comprehensive examination of different hot and cold combined quenching/extraction approaches to extract and quantify intracellular metabolites of Pseudomonas taiwanensis (P. taiwanensis) VLB120 to provide a useful reference data set of absolute intracellular metabolite concentrations.

View Article and Find Full Text PDF

L-serine is a promising building block biochemical with a high theoretical production yield from glucose. Toxicity of L-serine is however prohibitive for high-titer production in E. coli.

View Article and Find Full Text PDF

Stilbenoids, including resveratrol and its methylated derivatives, are natural potent antioxidants, produced by some plants in trace amounts as defense compounds. Extraction of stilbenoids from natural sources is costly due to their low abundance and often limited availability of the plant. Here we engineered the yeast Saccharomyces cerevisiae for production of stilbenoids on a simple mineral medium typically used for industrial production.

View Article and Find Full Text PDF

Protein secretion in yeast is a complex process and its efficiency depends on a variety of parameters. We performed a comparative proteome analysis of a set of Schizosaccharomyces pombe strains producing the α-glucosidase maltase in increasing amounts to investigate the overall proteomic response of the cell to the burden of protein production along the various steps of protein production and secretion. Proteome analysis of these strains, utilizing an isobaric labeling/two dimensional LC-MALDI MS approach, revealed complex changes, from chaperones and secretory transport machinery to proteins controlling transcription and translation.

View Article and Find Full Text PDF

Background: In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs.

View Article and Find Full Text PDF

Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred option. However, integration of pathway genes in single or few copies, especially those encoding rate-controlling steps, is often not sufficient to sustain high metabolic fluxes.

View Article and Find Full Text PDF

Melatonin is a natural mammalian hormone that plays an important role in regulating the circadian cycle in humans. It is a clinically effective drug exhibiting positive effects as a sleep aid and a powerful antioxidant used as a dietary supplement. Commercial melatonin production is predominantly performed by complex chemical synthesis.

View Article and Find Full Text PDF

L-serine is a widely used amino acid that has been proposed as a potential building block biochemical. The high theoretical yield from glucose makes a fermentation based production attractive. In order to achieve this goal, serine degradation to pyruvate and glycine in E.

View Article and Find Full Text PDF

Microbial fermentation of renewable feedstocks into plastic monomers can decrease our fossil dependence and reduce global CO2 emissions. 3-Hydroxypropionic acid (3HP) is a potential chemical building block for sustainable production of superabsorbent polymers and acrylic plastics. With the objective of developing Saccharomyces cerevisiae as an efficient cell factory for high-level production of 3HP, we identified the β-alanine biosynthetic route as the most economically attractive according to the metabolic modeling.

View Article and Find Full Text PDF

Protein secretion in yeast is generally associated with a burden to cellular metabolism. To investigate this metabolic burden in Schizosaccharomyces pombe, we constructed a set of strains secreting the model protein maltase in different amounts. We quantified the influence of protein secretion on the metabolism applying (13)C-based metabolic flux analysis in chemostat cultures.

View Article and Find Full Text PDF

Bacterial contamination of platelet concentrates (PCs) can lead to fatal transfusion transmitted diseases and is the most abundant infectious risk in transfusion medicine. The storage conditions of PCs provide a good environment for bacterial growth. The detection of these contaminations at an early stage is therefore important to avoid the transfusion of contaminated samples.

View Article and Find Full Text PDF

A gelatinase-based device for fast detection of wound infection was developed. Collective gelatinolytic activity in infected wounds was 23 times higher (p ≤ 0.001) than in noninfected wounds and blisters according to the clinical and microbiological description of the wounds.

View Article and Find Full Text PDF

Growth on glycerol has already been a topic of research for several yeast species, and recent publications deal with the regulatory mechanisms of glycerol assimilation by the fission yeast Schizosaccharomyces pombe. We investigated glycerol metabolism of S. pombe from a physiological point of view, characterizing growth and metabolism on a mixture of glycerol and acetate and comparing it to growth on glucose under respirative growth conditions in chemostat experiments.

View Article and Find Full Text PDF

Background: Purine nucleotides exhibit various functions in cellular metabolism. Besides serving as building blocks for nucleic acid synthesis, they participate in signaling pathways and energy metabolism. Further, IMP and GMP represent industrially relevant biotechnological products used as flavor enhancing additives in food industry.

View Article and Find Full Text PDF

Intermediates of the purine biosynthesis pathway play key roles in cellular metabolism including nucleic acid synthesis and signal mediation. In addition, they are also of major interest to the biotechnological industry as several intermediates either possess flavor-enhancing characteristics or are applied in medical therapy. In this study, we have developed an analytical method for quantitation of 12 intermediates from the purine biosynthesis pathway including important nucleotides and their corresponding nucleosides and nucleobases.

View Article and Find Full Text PDF

Corynebacterium glutamicum, the best established industrial producer organism for lysine was genetically modified to allow the production of lysine on grass and corn silages. The resulting strain C. glutamicum lysC(fbr)dld(Psod)pyc(Psod)malE(Psod)fbp(Psod)gapX(Psod) was based on earlier work (Neuner and Heinzle, 2011).

View Article and Find Full Text PDF

Chemostat cultivation is a powerful tool for physiological studies of microorganisms. We report the construction and application of a set of eight parallel small-scale bioreactors with a working volume of 10 mL for continuous cultivation. Hungate tubes were used as culture vessels connected to multichannel-peristaltic pumps for feeding fresh media and removal of culture broth and off-gas.

View Article and Find Full Text PDF

5-Keto-D-fructose is a useful starting material for the synthesis of pyrrolidine iminosugars. It can be prepared by regioselective oxidation of L-sorbose using pyranose 2-oxidase (P2Ox) and O(2) as a cosubstrate. As the solubility of O(2) in aqueous solution is low and the affinity of P2Ox for O(2) is poor, we developed a new and efficient process for the production of 5-keto-D-fructose based on engineered P2Ox from Peniophora gigantea and in situ generation of O(2) from H(2) O(2) with catalase.

View Article and Find Full Text PDF

Bioresponsive polymers (BRPs) allow the detection of potentially pathogenic microorganisms. Here, peptidoglycan and cellulose based hydrogels were constructed with potential for diagnosis of wound infection or, for example, Aspergillosis, respectively. These systems respond to extracellular enzymes from microbes or enzymes secreted from the human immune system in case of infection.

View Article and Find Full Text PDF