Publications by authors named "Konstantin N Semenov"

The review summarises the prospects in the application of graphene and graphene-based nanomaterials (GBNs) in nanomedicine, including drug delivery, photothermal and photodynamic therapy, and theranostics in cancer treatment. The application of GBNs in various areas of science and medicine is due to the unique properties of graphene allowing the development of novel ground-breaking biomedical applications. The review describes current approaches to the production of new targeting graphene-based biomedical agents for the chemotherapy, photothermal therapy, and photodynamic therapy of tumors.

View Article and Find Full Text PDF

Copper (Cu) toxicity in crops is a result of excessive release of Cu into environment. Little is known about mitigation of Cu toxicity through the application of carbon-based nanomaterials including water-soluble fullerene C derivatives. Two derivatives of fullerene were examined: polyhydroxylated C (fullerenol) and arginine C derivative.

View Article and Find Full Text PDF

The review systematizes data on the wide possibilities of practical application of carbon nanostructures. Much attention is paid to the use of carbon nanomaterials in medicine for the visualization of tumors during surgical interventions, in the creation of cosmetics, as well as in agriculture in the creation of fertilizers. Additionally, we demonstrate trends in research in the field of carbon nanomaterials with a view to elaborating targeted drug delivery systems.

View Article and Find Full Text PDF

Copper (Cu), when in excess, is one of the most toxic and hazardous metals to all living organisms, including plants. Engineered nanomaterials have the potential for increasing crop protection. However, the protective role of fullerenes (carbon-based nanoparticles with wide application in various areas) against Cu toxicity in plants is, so far, understudied.

View Article and Find Full Text PDF

The work aimed to investigate the biocompatibility and biological activity of the water-soluble fullerene adduct C-Arg. It was found that the material is haemocompatible, is not cyto- and genotoxic, possesses pronounced antioxidant activity. Additionally, this paper outlines the direction of application of water-soluble fullerene adducts in the creation of neuroprotectors.

View Article and Find Full Text PDF

We report the synthesis of covalent conjugates of nanodiamonds with doxorubicin and a cytostatic drug from the class of 1,3,5-triazines. The obtained conjugates were identified using a number of physicochemical methods (IR-spectroscopy, NMR-spectroscopy, XRD, XPS, TEM). As a result of our study, it was found that ND-СONH-Dox and ND-COO-Diox showed good hemocompatibility, since they did not affect plasma coagulation hemostasis, platelet functional activity, and erythrocyte membrane.

View Article and Find Full Text PDF

The aim of this work is to synthesise and study the biocompatibility and biological activity of the C fullerene adduct with l-threonine (C-Thr). The obtained adduct was identified using a complex of physicochemical methods, namely, C NMR spectroscopy, IR spectroscopy, thermogravimetric analysis, electron spectroscopy, elemental analysis, and high-performance liquid chromatography. The study of biocompatibility and biological activity of the C-Thr adduct included the study of haemocompatibility (haemolysis, platelet aggregation, plasma coagulation haemostasis, binding to human serum albumin, esterase activity), antiradical activity, cytotoxicity, cell proliferation, and interaction with DNA (determination of the DNA binding constant and genotoxicity).

View Article and Find Full Text PDF
Article Synopsis
  • * The compound demonstrated good hemocompatibility and antioxidant properties, but did not show effective antiradical activity throughout its tested concentrations.
  • * In vitro tests indicated the compound has varying cytotoxic effects on different cancer cell lines, suggesting possible cancer-fighting mechanisms through inhibition of the HIF pathway.
View Article and Find Full Text PDF

In recent years, pro-oncogenic mechanisms of the tumour microenvironment (ТМЕ) have been actively discussed. One of the main cytokines of the TМЕ is interleukin-1 beta (IL-1β), which exhibits proinflammatory properties. Some studies have shown an association between an increase in IL-1β levels and tumour progression.

View Article and Find Full Text PDF

Functionalization of the fullerene core with amino acids has become a new and promising direction in the field of nanochemistry. The biologic activity of water-soluble fullerene derivatives is based on such properties as lipophilicity, electron deficiency and photosensitivity. The complex of above-mentioned properties can be used to develop protection of biomolecules (in particular, proteins) from external physical and chemical influences.

View Article and Find Full Text PDF

The article is dedicated to the comprehensive biocompatibility investigation of synthesised graphene oxide (GO) enriched with oxygen-containing functional groups (⁓85%). GO was synthesised through a modified Hummers and Offeman's method and characterised using C NMR, Raman, and IR spectroscopy, XRD, HRTEM, along with size dimensions and ζ-potentials in aqueous dispersions. Biocompatibility study included tests on haemocompatibility (haemolysis, platelet aggregation, binding to human serum albumin and its esterase activity), antioxidant activity (2,2-diphenyl-1-picrylhydrazyl reaction, NO-radical uptake, Radachlorin photobleaching, photo-induced haemolysis), genotoxicity using DNA comet assay, as well as metabolic activity and proliferation of HEK293 cells.

View Article and Find Full Text PDF

We present a new modification of graphene oxide with very high content (85 wt %) of oxygen-containing functional groups (hydroxy, epoxy, lactol, carboxyl, and carbonyl groups) that forms stable aqueous dispersion in up to 9 g·L concentration solutions. A novel faster method of the synthesis is described that produces up to 1 kg of the material and allows controlling the particle size in solution. The synthesized compound was characterized by various physicochemical methods and molecular dynamics modeling, revealing a unique structure in the form of a multilayered wafer of several sheets thick, where each sheet is highly corrugated.

View Article and Find Full Text PDF

Light fullerenes, C and C, have significant potential in biomedical applications due to their ability to absorb reactive oxygen species, inhibit the development of tumors, inactivate viruses and bacteria, and as the basis for developing systems for targeted drug delivery. However, the hydrophobicity of individual fullerenes complicates their practical use; therefore, creating water-soluble derivatives of fullerenes is increasingly important. Currently, the most studied soluble adducts of fullerenes are polyhydroxy fullerenes or fullerenols.

View Article and Find Full Text PDF

The unique properties of carbon-based nanomaterials, including fullerenol, have attracted great interest in agricultural and environmental applications. Iron (Fe) is an essential micronutrient for major metabolic processes, for which a shortage causes chlorosis and reduces the yield of many crops cultivated worldwide. In the current study, the metabolic responses of Cucumis sativus (a Strategy I plant) to fullerenol treatments were investigated depending on the Fe status of plants.

View Article and Find Full Text PDF

The article is devoted to the study of the pharmacokinetics of fullerene C in oil and micellar forms, analysis of its content in blood, liver, lungs, kidneys, heart, brain, adrenal glands, thymus, testicles, and spleen. The highest accumulation of C was found in the liver and adrenal glands. As a result of the studies carried out, it was shown that the bioavailability of C in the micellar form is higher than that in an oil solution.

View Article and Find Full Text PDF

Silica is silicon dioxide, which, depending on the production method, can exist in various amorphous forms with varying specific surface area, particle size, pore volume and size, and, as a result, with different physicochemical and sorption characteristics. The presence of silanol groups on the surface of silicas provides the possibility of its further functionalisation. In addition, the developed specific surface of Aerosil allows to obtain composites with a high content of biologically active substances.

View Article and Find Full Text PDF

Amino acid adducts of light fullerenes have a potential of application in a variety of fields of biomedicine, that is reactive oxygen species scavenging activity, anticancer activity, viruses and bacteria inactivation etc. In this work, the water-soluble C fullerene derivative with l-hydroxyproline (C(CHNO), C-Hyp) was studied. Extensive biomedical investigation of this compound, namely, antiradical activity in the reaction with stable diphenylpicrylhydrazyl radical, the binding to human serum albumin, photodynamic properties, cytotoxicity in glioblastoma A172 and lung carcinoma A549 cell lines, erythrocytes haemolysis, platelet aggregation, genotoxicity on human peripheral blood mononuclear cells was conducted.

View Article and Find Full Text PDF

This article presents data on the synthesis, identification, computer simulation and biocompatibility of graphene oxide (GO) functionalized with L-cysteine (GFC). It was determined that GO reacts with L-cysteine in two different ways: in an alkaline medium, L-cysteine reduces functional groups on the surface and at the boundaries of GO; with heating and the use of thionyl chloride, L-cysteine covalently attaches to GO through carboxylic groups only at the boundaries. The identification of GO, reduced graphene oxide and GFC was performed using various physicochemical methods, including infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and high-resolution transmission electron microscopy.

View Article and Find Full Text PDF

The water-soluble fullerenols are novel carbon-based nanomaterials with unique properties, which afford them with wide agricultural applications. Iron (Fe) deficiency is the most common and widespread nutrition disorder affecting plants. Foliar Fe treatments of plants have been carried out with solutions devoid of fullerenol.

View Article and Find Full Text PDF

One of the most studied fullerene members, C, has a potential of application in various fields of biomedicine including reactive oxygen species (ROS) scavenging activity, inhibiting of tumours development, inactivating of viruses and bacteria, as well as elaboration of diagnostic and targeted drug delivery tools. However, the hydrophobicity of this molecule impedes its practical use, therefore the actuality of the research devoted to functionalisation of fullerenes leading to amphiphilic derivatives remains important. In this work, the water-soluble carboxylated fullerene derivative C[C(COOH)] was studied.

View Article and Find Full Text PDF