Publications by authors named "Konstantin Khodosevich"

The intestinal epithelium ensures uptake of vital nutrients and acts as a barrier between luminal contents and the underlying immune system. In inflammatory bowel diseases, such as ulcerative colitis (UC), this barrier is compromised, and patients experience debilitating symptoms. Here, we perform single-cell RNA profiling of epithelial cells and outline patterns of cell fate decisions in healthy individuals and UC patients.

View Article and Find Full Text PDF

The fetal development of organs and functions is vulnerable to perturbation by maternal inflammation which may increase susceptibility to disorders after birth. Because it is not well understood how the placenta and fetus respond to acute lung- inflammation, we characterize the response to maternal pulmonary lipopolysaccharide exposure across 24 h in maternal and fetal organs using multi-omics, imaging and integrative analyses. Unlike maternal organs, which mount strong inflammatory immune responses, the placenta upregulates immuno-modulatory genes, in particular the IL-6 signaling suppressor Socs3.

View Article and Find Full Text PDF

Midbrain dopamine neurons (DNs) respond to a first exposure to addictive drugs and play key roles in chronic drug usage. As the synaptic and transcriptional changes that follow an acute cocaine exposure are mostly resolved within a few days, the molecular changes that encode the long-term cellular memory of the exposure within DNs remain unknown. To investigate whether a single cocaine exposure induces long-term changes in the 3D genome structure of DNs, we applied Genome Architecture Mapping and single nucleus transcriptomic analyses in the mouse midbrain.

View Article and Find Full Text PDF

GABAergic interneurons play a critical role in maintaining neural circuit balance, excitation-inhibition regulation, and cognitive function modulation. In tuberous sclerosis complex (TSC), GABAergic neuron dysfunction contributes to disrupted network activity and associated neurological symptoms, assumingly in a cell type-specific manner. This GABAergic centric study focuses on identifying specific interneuron subpopulations within TSC, emphasizing the unique characteristics of medial ganglionic eminence (MGE)- and caudal ganglionic eminence (CGE)-derived interneurons.

View Article and Find Full Text PDF

Recently, single-cell RNA-sequencing (scRNA-seq) has enabled unprecedented insights to the cellular landscape of the brains of many different species, among them the rhesus macaque as a key animal model. Building on previous, broader surveys of the macaque brain, we closely examined five immediately neighboring areas within the visual cortex of the rhesus macaque: V1, V2, V4, MT and TEO. To facilitate this, we first devised a novel pipeline for brain spatial archive - the BrainSPACE - which enabled robust archiving and sampling from the whole unfixed brain.

View Article and Find Full Text PDF

In spite of major efforts and investment in development of psychiatric drugs, many clinical trials have failed in recent decades, and clinicians still prescribe drugs that were discovered many years ago. Although multiple reasons have been discussed for the drug development deadlock, we focus here on one of the major possible biological reasons: differences between the characteristics of drug targets in preclinical models and the corresponding targets in patients. Importantly, based on technological advances in single-cell analysis, we propose here a framework for the use of available and newly emerging knowledge from single-cell and spatial omics studies to evaluate and potentially improve the translational predictivity of preclinical models before commencing preclinical and, in particular, clinical studies.

View Article and Find Full Text PDF

Introduction: Constitutive activation of the mTOR pathway, as observed in Tuberous Sclerosis Complex (TSC), leads to glial dysfunction and subsequent epileptogenesis. Although astrocytes are considered important mediators for synaptic clearance and phagocytosis, little is known on how astrocytes contribute to the epileptogenic network.

Methods: We employed singlenuclei RNA sequencing and a hybrid fetal calf serum (FCS)/FCS-free cell culture model to explore the capacity of TSC-derived astrocytes to maintain glutamate homeostasis and clear debris in their environment.

View Article and Find Full Text PDF

Disruption of brain development early in life may underlie the neurobiology behind schizophrenia. We have reported more immature synaptic spines in the frontal cortex (FC) of adult Roman High-Avoidance (RHA-I) rats, a behavioural model displaying schizophrenia-like traits. Here, we performed a whole transcriptome analysis in the FC of 4 months old male RHA-I (n=8) and its counterpart, the Roman Low-Avoidance (RLA-I) (n=8).

View Article and Find Full Text PDF

Neurodevelopmental disorders arise due to various risk factors that can perturb different stages of brain development, and a combinatorial impact of these risk factors programs the phenotype in adulthood. While modeling the complete phenotype of a neurodevelopmental disorder is challenging, individual developmental perturbations can be successfully modeled in vivo in animals and in vitro in human cellular models. Nevertheless, our limited knowledge of human brain development restricts modeling strategies and has raised questions of how well a model corresponds to human in vivo brain development.

View Article and Find Full Text PDF

Glioma is a devastating brain tumor with a high mortality rate attributed to the glioma stem cells (GSCs) possessing high plasticity. Marker mutations in isocitrate dehydrogenase type 1 (IDH1) and tumor protein 53 (TP53) are frequent in gliomas and impact the cell fate decisions. Understanding the GSC heterogeneity within IDH1- and TP53- mutant tumors may elucidate possible treatment targets.

View Article and Find Full Text PDF

Schizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizophrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed topographically by immunohistochemistry.

View Article and Find Full Text PDF

Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells.

View Article and Find Full Text PDF

Normal breast luminal epithelial progenitors have been implicated as cell of origin in basal-like breast cancer, but their anatomical localization remains understudied. Here, we combine collection under the microscope of organoids from reduction mammoplasties and single-cell mRNA sequencing (scRNA-seq) of FACS-sorted luminal epithelial cells with multicolor imaging to profile ducts and terminal duct lobular units (TDLUs) and compare them with breast cancer subtypes. Unsupervised clustering reveals eleven distinct clusters and a differentiation trajectory starting with keratin 15 (K15) progenitors enriched in ducts.

View Article and Find Full Text PDF

Synaptic vesicle glycoprotein-2 (SV2) is a family of proteins consisting of SV2A, SV2B, and SV2C. This protein family has attracted attention in recent years after SV2A was shown to be an epileptic drug target and a perhaps a biomarker of synaptic density. So far, the anatomical localization of these proteins in the rodent and human brain have been reported, but co-expression of SV2 genes on a cellular level, their expressions in the human brain, comparison to radioligand binding, any possible regulation in epilepsy are not known.

View Article and Find Full Text PDF

Background: A number of rare copy number variants (CNVs) have been linked to neurodevelopmental disorders. However, because CNVs encompass many genes, it is often difficult to identify the mechanisms that lead to developmental perturbations.

Methods: We used 15q13.

View Article and Find Full Text PDF

Germ cells have evolved unique mechanisms to ensure the transmission of genetically and nongenetically encoded information, whose alteration compromises germ cell immortality. Chromatin factors play fundamental roles in these mechanisms. H3K36 and H3K27 methyltransferases shape and propagate a pattern of histone methylation essential for C.

View Article and Find Full Text PDF

Single-molecule spatial transcriptomics protocols based on in situ sequencing or multiplexed RNA fluorescent hybridization can reveal detailed tissue organization. However, distinguishing the boundaries of individual cells in such data is challenging and can hamper downstream analysis. Current methods generally approximate cells positions using nuclei stains.

View Article and Find Full Text PDF

Familial Parkinson disease (PD) is associated with rare genetic mutations, but the etiology in most patients with sporadic (s)PD is largely unknown, and the basis for its progression to dementia (sPDD) is poorly characterized. We have identified that loss of IFNβ or IFNAR1, the receptor for IFNα/β, causes pathological and behavioral changes resembling PDD, prompting us to hypothesize that dysregulated genes in IFNβ-IFNAR signaling pathway predispose one to sPD. By transcriptomic analysis, we found defective neuronal IFNβ-IFNAR signaling, including particularly elevated PIAS2 associated with sPDD.

View Article and Find Full Text PDF
Article Synopsis
  • The entorhinal cortex (EC) is crucial for spatial processing and has a unique structure that bridges the paleocortex and neocortex.
  • This study explores the developmental aspects of the EC using pigs and BrdU labeling in mice, revealing that pigs are a valuable model for understanding human brain development.
  • Findings suggest a distinct pattern called "parallel lamination," where deeper layers of the EC form before the superficial layers, contrasting the typical inside-out development seen in the neocortex.
View Article and Find Full Text PDF

The cortex in the mammalian brain is the most complex brain region that integrates sensory information and coordinates motor and cognitive processes. To perform such functions, the cortex contains multiple subtypes of neurons that are generated during embryogenesis. Newly born neurons migrate to their proper location in the cortex, grow axons and dendrites, and form neuronal circuits.

View Article and Find Full Text PDF
Article Synopsis
  • Epilepsy is a common neurological disorder, but its complex neuronal circuits make understanding its causes difficult.
  • Researchers analyzed over 110,000 neuron transcriptomes from people with temporal lobe epilepsy and found significant changes in specific types of neurons, particularly among principal neurons and GABAergic interneurons.
  • The study revealed that these transcriptomic changes may indicate a disruption in neuronal circuits, especially with glutamate signaling showing significant dysregulation in epilepsy.
View Article and Find Full Text PDF