Penelope-like elements are a class of retroelement that have now been identified in >50 species belonging to at least 10 animal phyla. The Penelope element isolated from Drosophila virilis is the only transpositionally active representative of this class isolated so far. The single ORF of Penelope and its relatives contains regions homologous to a reverse transcriptase of atypical structure and to the GIY-YIG, or Uri, an endonuclease (EN) domain not previously found in retroelements.
View Article and Find Full Text PDFWe report that two structurally similar transposable elements containing reverse transcriptase (RT), Penelope in Drosophila virilis and Athena in bdelloid rotifers, have proliferated as copies containing introns. The ability of Penelope-like elements (PLEs) to retain introns, their separate phylogenetic placement and their peculiar structural features make them a novel class of eukaryotic retroelements.
View Article and Find Full Text PDFThe Penelope family of retroelements was first described in species of the Drosophila virilis group. Intact elements encode a reverse transcriptase and an endonuclease of the UvrC type, which may play a role in Penelope integration. Penelope is a key element in the induction of D.
View Article and Find Full Text PDFAnalysis of the precursors of bacterial exported proteins revealed that those having bulky hydrophobic residues at position -5 have a high incidence of Pro residues at positions -6 and -4, Val at position -3, and Ser at positions -4 and -2. This led to a hypothesis that the previously observed inhibition of processing by bulky residues at position -5 can be suppressed by introduction of Pro, Ser, or Val in the corresponding nearby positions. Subsequent mutational analysis of Escherichia coli alkaline phosphatase showed that, as it was predicted, Pro on either side of bulky hydrophobic -5 Leu, Ile, or Tyr completely restores efficiency of the maturation.
View Article and Find Full Text PDF