Publications by authors named "Konstantin I Piatkov"

The N-degron pathway is an emerging target for anti-tumor therapies, because of its capacity to positively regulate many hallmarks of cancer, including angiogenesis, cell proliferation, motility, and survival. Thus, inhibition of the N-degron pathway offers the potential to be a highly effective anti-cancer treatment. With the use of a small interfering RNA (siRNA)-mediated approach for selective downregulation of the four Arg/N-degron-dependent ubiquitin ligases, UBR1, UBR2, UBR4, and UBR5, we demonstrated decreased cell migration and proliferation and increased spontaneous apoptosis in cancer cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is accompanied by the dysfunction of intracellular protein homeostasis systems, in particular the ubiquitin-proteasome system (UPS). Beta-amyloid peptide (Aβ), which is involved in the processes of neurodegeneration in AD, is a substrate of this system, however its effect on UPS activity is still poorly explored. Here we found that Aβ peptides inhibited the proteolytic activity of the antiapoptotic Arg/N-end rule pathway that is a part of UPS.

View Article and Find Full Text PDF

N-terminal arginylation (Nt-arginylation) of proteins is mediated by the Ate1 arginyltransferase (R-transferase), a component of the Arg/N-end rule pathway. This proteolytic system recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. The definitively identified ("canonical") residues that are Nt-arginylated by R-transferase are N-terminal Asp, Glu, and (oxidized) Cys.

View Article and Find Full Text PDF

In bacteria, all nascent proteins bear the pretranslationally formed N-terminal formyl-methionine (fMet) residue. The fMet residue is cotranslationally deformylated by a ribosome-associated deformylase. The formylation of N-terminal Met in bacterial proteins is not strictly essential for either translation or cell viability.

View Article and Find Full Text PDF

The arginyltransferase Ate1 is a component of the N-end rule pathway, which recognizes proteins containing N-terminal degradation signals called N-degrons, polyubiquitylates these proteins, and thereby causes their degradation by the proteasome. At least six isoforms of mouse Ate1 are produced through alternative splicing of Ate1 pre-mRNA. We identified a previously uncharacterized mouse protein, termed Liat1 (ligand of Ate1), that interacts with Ate1 but does not appear to be its arginylation substrate.

View Article and Find Full Text PDF

Calpains are Ca(2+)-dependent intracellular proteases. We show here that calpain-generated natural C-terminal fragments of proteins that include G protein-coupled receptors, transmembrane ion channels, transcriptional regulators, apoptosis controllers, kinases, and phosphatases (Phe-GluN2a, Lys-Ica512, Arg-Ankrd2, Tyr-Grm1, Arg-Atp2b2, Glu-Bak, Arg-Igfbp2, Glu-IκBα, and Arg-c-Fos), are short-lived substrates of the Arg/N-end rule pathway, which targets destabilizing N-terminal residues. We also found that the identity of a fragment's N-terminal residue can change during evolution, but the residue's destabilizing activity is virtually always retained, suggesting selection pressures that favor a short half-life of the calpain-generated fragment.

View Article and Find Full Text PDF

Protein aggregates are a common feature of neurodegenerative syndromes. Specific protein fragments were found to be aggregated in disorders including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. Here, we show that the natural C-terminal fragments of Tau, TDP43, and α-synuclein are short-lived substrates of the Arg/N-end rule pathway, a processive proteolytic system that targets proteins bearing "destabilizing" N-terminal residues.

View Article and Find Full Text PDF

Deamidation of N-terminal Gln by the Ntaq1 Nt(Q)-amidase is a part of the Arg/N-end rule pathway, a ubiquitin-dependent proteolytic system. Here we identify Gln-Usp1(Ct), the C-terminal fragment of the autocleaved Usp1 deubiquitylase, as the first physiological Arg/N-end rule substrate that is targeted for degradation through deamidation of N-terminal Gln. Usp1 regulates genomic stability, in part through the deubiquitylation of monoubiquitylated PCNA, a DNA polymerase processivity factor.

View Article and Find Full Text PDF

In the course of apoptosis, activated caspases cleave ∼500 to ∼1,000 different proteins in a mammalian cell. The dynamics of apoptosis involve a number of previously identified, caspase-generated proapoptotic protein fragments, defined as those that increase the probability of apoptosis. In contrast to activated caspases, which can be counteracted by inhibitor of apoptosis proteins, there is little understanding of antiapoptotic responses to proapoptotic protein fragments.

View Article and Find Full Text PDF

Deamidation of N-terminal Gln by Nt(Q)-amidase, an N-terminal amidohydrolase, is a part of the N-end rule pathway of protein degradation. We detected the activity of Nt(Q)-amidase, termed Ntaq1, in mouse tissues, purified Ntaq1 from bovine brains, identified its gene, and began analyzing this enzyme. Ntaq1 is highly conserved among animals, plants, and some fungi, but its sequence is dissimilar to sequences of other amidases.

View Article and Find Full Text PDF