Publications by authors named "Konstantin G Ptitsyn"

Article Synopsis
  • The ring rot of potato, caused by a bacterial pathogen, is a quarantine disease that threatens the global potato industry, making its detection crucial for control efforts.
  • A new detection system combines CRISPR/Cas13a with NASBA for identifying viable bacteria in potato tubers, allowing for both instrumental and visual detection methods.
  • The system shows a limit of detection as low as 1000 RNA copies per reaction and can be performed in under 2 hours, potentially serving as a routine on-site testing method.
View Article and Find Full Text PDF

The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on N6-methyladenosine (m6A) RNA modifications, highlighting their critical role in regulating RNA functions and cellular processes in HepG2 cells using Oxford Nanopore technology and the m6Anet algorithm.* -
  • Researchers identified 3,968 potential m6A modification sites across 2,851 transcripts linked to 1,396 genes, revealing their involvement in key processes like ubiquitination and transcription regulation, particularly relevant to cancer biology.* -
  • The study emphasizes the need for reproducibility in algorithmic analyses and found a strong correlation between transcriptomic and translatomic levels, contributing to a deeper understanding of m6A modifications' impacts on cellular functions.*
View Article and Find Full Text PDF

The 2'-deoxyuridine-5'-triphosphates modified with fluorescein (dUTP-Fl) or rhodamine (dUTP-Rh) were tested as bearers of electroactive labels and as proper substrates for polymerases used in polymerase chain reaction (PCR) and isothermal recombinase polymerase amplification (RPA) with the aim of electrochemical detection of double-stranded DNA (dsDNA) amplification products. For this purpose, electrochemical behavior of free fluorescein and rhodamine as well as the modified nucleotides, dUTP-Fl and dUTP-Rh, was studied by cyclic (CV) and square wave (SWV) voltammetry on carbon screen printed electrodes. Both free fluorescein and dUTP-Fl underwent a two-step oxidation at the peak potentials (E) of 0.

View Article and Find Full Text PDF

Long-read direct RNA sequencing developed by Oxford Nanopore Technologies (ONT) is quickly gaining popularity for transcriptome studies, while fast turnaround time and low cost make it an attractive instrument for clinical applications. There is a growing interest to utilize transcriptome data to unravel activated biological processes responsible for disease progression and response to therapies. This trend is of particular interest for precision medicine which aims at single-patient analysis.

View Article and Find Full Text PDF

We report the results obtained in 2012-2013 by the Russian Consortium for the Chromosome-centric Human Proteome Project (C-HPP). The main scope of this work was the transcriptome profiling of genes on human chromosome 18 (Chr 18), as well as their encoded proteome, from three types of biomaterials: liver tissue, the hepatocellular carcinoma-derived cell line HepG2, and blood plasma. The transcriptome profiling for liver tissue was independently performed using two RNaseq platforms (SOLiD and Illumina) and also by droplet digital PCR (ddPCR) and quantitative RT-PCR.

View Article and Find Full Text PDF