Publications by authors named "Konstantin Chumakov"

Pandemics of infectious disease and growing anti-microbial resistance (AMR) pose major threats to global health, trade, and security. Conflict and climate change compound and accelerate these threats. The One Health approach recognizes the interconnectedness of human, animal, and environmental health, but is grounded in the biomedical model, which reduces health to the absence of disease.

View Article and Find Full Text PDF

Recently, a multiplex PCR-based titration (MPBT) assay was developed for simultaneous determination of infectious titers of all three Sabin strains of the oral poliovirus vaccine (OPV) to replace the conventional CCID assay, which is both time-consuming and laborious. The MPBT assay was shown to be reproducible, robust and sensitive. The conventional and MPBT assays showed similar results and sensitivity.

View Article and Find Full Text PDF

Recently, genetically stable novel OPVs (nOPV) were developed by modifying the genomes of Sabin viruses of conventional OPVs to reduce the risk of reversion to neurovirulence and therefore the risk of generating circulating vaccine-derived polioviruses. There is a need for specific and sensitive methods for the identification and quantification of nOPV viruses individually and in mixtures for clinical trials and potentially for manufacturing quality control and environmental surveillance. In this communication, we evaluated and improved the quantitative multiplex one-step reverse transcriptase polymerase chain reaction (qmosRT-PCR) assay for the identification and quantification of nOPV viruses in samples with different formulations and virus concentrations and in virus-spiked stool samples.

View Article and Find Full Text PDF

Global eradication of poliovirus remains elusive, and it is critical to develop next generation vaccines and antivirals. In support of this goal, we map the epitope of human monoclonal antibody 9H2 which is able to neutralize the three serotypes of poliovirus. Using cryo-EM we solve the near-atomic structures of 9H2 fragments (Fab) bound to capsids of poliovirus serotypes 1, 2, and 3.

View Article and Find Full Text PDF

Trained immunity is a long-term increase in responsiveness of innate immune cells, induced by certain infections and vaccines. During the last 3 years of the COVID-19 pandemic, vaccines that induce trained immunity, such as BCG, MMR, OPV, and others, have been investigated for their capacity to protect against COVID-19. Further, trained immunity-inducing vaccines have been shown to improve B and T cell responsiveness to both mRNA- and adenovirus-based anti-COVID-19 vaccines.

View Article and Find Full Text PDF

Inactivated Polio Vaccines (IPV) and live Oral Polio Vaccine (OPV) were introduced in the mid-20th century, and their coordinated worldwide use led to almost complete elimination of the disease, with only one serotype of poliovirus remaining endemic in just two countries. Polio eradication will lead to discontinuation of OPV use and its replacement with IPV or other vaccines that are currently under development that will need to be tested in clinical trials. Despite decades of research, questions remain about the serological correlates of polio vaccine efficacy, specifically whether the vaccines are equally protective against immunologically different strains of the same serotype.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the containment of wild-type 2 poliovirus (PV2) post-eradication, highlighting the need to destroy all materials that may contain it, while noting past cases of polio in Israel involved all three serotypes.
  • The researchers aimed to demonstrate that whole genome sequences (WGS) of wild-type 3 poliovirus (PV3) could be retrieved from archived samples without re-amplifying neurovirulent viruses, connecting these sequences to historical case data and their phylogenetic relationships.
  • They successfully generated WGS for 55 PV3 isolates, identifying seven distinct lineages, with one causing an outbreak over six years, and found recombinant vaccine-like PV3 strains in some cases, enhancing understanding
View Article and Find Full Text PDF
Article Synopsis
  • Sabin strains in oral poliovirus vaccines (OPV) can revert to harmful forms, prompting the development of a new OPV2 (nOPV2) designed to remain stable and reduce disease-causing strains in populations with low vaccination rates.
  • In clinical trials conducted in Panama, infants received either monovalent OPV2 (mOPV2) or nOPV2, and researchers analyzed the poliovirus shed in their stools for genetic and phenotypic changes post-vaccination.
  • Results indicated that the Sabin-2 strain rapidly reverts to virulent forms, but nOPV2 showed little to no increase in neurovirulence, indicating it may be a safer option with significantly lower paralysis rates
View Article and Find Full Text PDF

Introduction: Recent reviews summarize evidence that some vaccines have heterologous or non-specific effects (NSE), potentially offering protection against multiple pathogens. Numerous economic evaluations examine vaccines' pathogen-specific effects, but less than a handful focus on NSE. This paper addresses that gap by reporting economic evaluations of the NSE of oral polio vaccine (OPV) against under-five mortality and COVID-19.

View Article and Find Full Text PDF

Emergence of mutations is an inherent property of RNA viruses with several implications for their replication, pathogenesis, and evolutionary adaptation. Oral poliovirus vaccine (OPV), developed by Albert Sabin, is composed of live attenuated polioviruses of three serotypes that can revert to neurovirulence during replication in cell culture and in vaccine recipients. Recently, a new modified variant of Sabin 2 virus was developed by introducing changes in its genome, making it more genetically stable to prevent the reversion.

View Article and Find Full Text PDF

Background: The live vaccines bacille Calmette-Guérin (BCG) and measles vaccine have beneficial nonspecific effects (NSEs) reducing mortality, more than can be explained by prevention of tuberculosis or measles infection. Live oral polio vaccine (OPV) will be stopped after polio eradication; we therefore reviewed the potential NSEs of OPV.

Methods: OPV has been provided in 3 contexts: (1) coadministration of OPV and diphtheria-tetanus-pertussis (DTP) vaccine at 6, 10, and 14 weeks of age; (2) at birth (OPV0) with BCG; and (3) in OPV campaigns (C-OPVs) initiated to eradicate polio infection.

View Article and Find Full Text PDF

Background: Effective response to emerging pandemic threats is complicated by the need to develop specific vaccines and other medical products. The availability of broadly specific countermeasures that could be deployed early in the pandemic could significantly alter its course and save countless lives. Live attenuated vaccines (LAVs) were shown to induce non-specific protection against a broad spectrum of off-target pathogens by stimulating innate immune responses.

View Article and Find Full Text PDF

Background: Several live attenuated vaccines were shown to provide temporary protection against a variety of infectious diseases through stimulation of the host innate immune system.

Objective: To test the hypothesis that countries using oral polio vaccine (OPV) have a lower cumulative number of cases diagnosed with COVID-19 per 100,000 population (CP100K) compared with those using only inactivated polio vaccine (IPV).

Methods: In an ecological study, the CP100K was compared between countries using OPV vs IPV.

View Article and Find Full Text PDF

Novel oral poliovirus vaccine type 2 (nOPV2) is being developed to reduce the rare occurrence of disease and outbreaks associated with the genetic instability of the Sabin vaccine strains. Children aged 1 to 5 years were enrolled in two related clinical studies to assess safety, immunogenicity, shedding rates and properties of the shed virus following vaccination with nOPV2 (two candidates) versus traditional Sabin OPV type 2 (mOPV2). The anticipated pattern of reversion and increased virulence was observed for shed Sabin-2 virus, as assessed using a mouse model of poliovirus neurovirulence.

View Article and Find Full Text PDF

Importance: Live attenuated vaccines may provide short-term protection against infectious diseases through stimulation of the innate immune system.

Objective: To evaluate whether passive exposure to live attenuated poliovirus is associated with diminished symptomatic infection with SARS-CoV-2.

Design, Setting, And Participants: In a longitudinal cohort study involving 87 923 people conducted between March 20 and December 20, 2020, the incidence of COVID-19 was compared between 2 groups of aged-matched women with and without exposure to live attenuated poliovirus in the oral polio vaccine (OPV).

View Article and Find Full Text PDF

Here, we examine the infection dynamics and interactions of two Zika virus (ZIKV) genomes: one is the full-length ZIKV genome (wild type [WT]), and the other is one of the naturally occurring defective viral genomes (DVGs), which can replicate in the presence of the WT genome, appears under high-MOI (multiplicity of infection) passaging conditions, and carries a deletion encompassing part of the structural and NS1 protein-coding region. Ordinary differential equations (ODEs) were used to simulate the infection of cells by virus particles and the intracellular replication of the WT and DVG genomes that produce these particles. For each virus passage in Vero and C6/36 cell cultures, the rates of the simulated processes were fitted to two types of observations: virus titer data and the assembled haplotypes of the replicate passage samples.

View Article and Find Full Text PDF

Sabin-strain oral polio vaccines (OPV) can, in rare instances, cause disease in recipients and susceptible contacts or evolve to become circulating vaccine-derived strains with the potential to cause outbreaks. Two novel type 2 OPV (nOPV2) candidates were designed to stabilize the genome against the rapid reversion that is observed following vaccination with Sabin OPV type 2 (mOPV2). Next-generation sequencing and a modified transgenic mouse neurovirulence test were applied to shed nOPV2 viruses from phase 1 and 2 studies and shed mOPV2 from a phase 4 study.

View Article and Find Full Text PDF

To control circulating vaccine-derived type 2 poliovirus outbreaks, a more genetically stable novel Oral Poliovirus Vaccine type 2 (nOPV2) was developed by targeted modifications of Sabin 2 genome. Since the use of OPV2 made of Sabin 2 strain has been stopped, it is important to exclude the possibility that batches of nOPV2 are contaminated with Sabin 2 virus. Here, we report the development of a simple quantitative one-step reverse-transcription polymerase chain reaction assay for the detection and quantitation of Sabin 2 virus in the presence of overwhelming amounts of nOPV2 strain.

View Article and Find Full Text PDF

A novel, genetically-stabilized type 2 oral polio vaccine (nOPV2), developed to assist in the global polio eradication program, was recently the first-ever vaccine granted Emergency Use Listing by the WHO. Lot release tests for this vaccine included-for the first time to our knowledge-the assessment of genetic heterogeneity using next-generation sequencing (NGS). NGS ensures that the genetically-modified regions of the vaccine virus genome remain as designed and that levels of polymorphisms which may impact safety or efficacy are controlled during routine production.

View Article and Find Full Text PDF

The Global Polio Eradication Initiative, launched in 1988 with anticipated completion by 2000, has yet to reach its ultimate goal. The recent surge of polio cases urgently calls for a reassessment of the programme's current strategy and a new design for the way forward. We propose that the sustainable protection of the world population against paralytic polio cannot be achieved simply by stopping the circulation of poliovirus but must also include maintaining high rates of population immunity indefinitely, which can be created and maintained by implementing global immunisation programmes with improved poliovirus vaccines that create comprehensive immunity without spawning new virulent viruses.

View Article and Find Full Text PDF

The COVID-19 pandemic triggered an unparalleled pursuit of vaccines to induce specific adaptive immunity, based on virus-neutralizing antibodies and T cell responses. Although several vaccines have been developed just a year after SARS-CoV-2 emerged in late 2019, global deployment will take months or even years. Meanwhile, the virus continues to take a severe toll on human life and exact substantial economic costs.

View Article and Find Full Text PDF