Deep brain stimulation is an efficacious treatment for dystonia. While the internal pallidum serves as the primary target, recently, stimulation of the subthalamic nucleus (STN) has been investigated. However, optimal targeting within this structure and its surroundings have not been studied in depth.
View Article and Find Full Text PDFFrontal circuits play a critical role in motor, cognitive and affective processing, and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)functions remains largely elusive. We studied 534 deep brain stimulation electrodes implanted to treat four different brain disorders.
View Article and Find Full Text PDF. Constructing a theoretical framework to improve deep brain stimulation (DBS) based on the neuronal spatiotemporal patterns of the stimulation-affected areas constitutes a primary target..
View Article and Find Full Text PDFFrontal circuits play a critical role in motor, cognitive, and affective processing - and their dysfunction may result in a variety of brain disorders. However, exactly which frontal domains mediate which (dys)function remains largely elusive. Here, we study 534 deep brain stimulation electrodes implanted to treat four different brain disorders.
View Article and Find Full Text PDFFollowing its introduction in 2014 and with support of a broad international community, the open-source toolbox Lead-DBS has evolved into a comprehensive neuroimaging platform dedicated to localizing, reconstructing, and visualizing electrodes implanted in the human brain, in the context of deep brain stimulation (DBS) and epilepsy monitoring. Expanding clinical indications for DBS, increasing availability of related research tools, and a growing community of clinician-scientist researchers, however, have led to an ongoing need to maintain, update, and standardize the codebase of Lead-DBS. Major development efforts of the platform in recent years have now yielded an end-to-end solution for DBS-based neuroimaging analysis allowing comprehensive image preprocessing, lead localization, stimulation volume modeling, and statistical analysis within a single tool.
View Article and Find Full Text PDFDeep brain stimulation (DBS) to the fornix is an investigational treatment for patients with mild Alzheimer's Disease. Outcomes from randomized clinical trials have shown that cognitive function improved in some patients but deteriorated in others. This could be explained by variance in electrode placement leading to differential engagement of neural circuits.
View Article and Find Full Text PDFBeet yellows virus, which belongs to the genus , family and has a significant negative economic impact, has proven to be challenging to detect and diagnose. To obtain antibodies against BYV, we propose an easier bioinformatics approach than the isolation and purification of the wild virus as an antigen. We used the SWISS-MODEL Workspace (Biozentrum Basel) protein 3D prediction program to discover epitopes of major coat protein p22 lying on the surface of the BYV capsid.
View Article and Find Full Text PDFBackground: Deep brain stimulation (DBS) is an established therapy for patients with Parkinson's disease. In silico computer models for DBS hold the potential to inform a selection of stimulation parameters. In recent years, the focus has shifted towards DBS-induced firing in myelinated axons, deemed particularly relevant for the external modulation of neural activity.
View Article and Find Full Text PDFRibonucleic acid (RNA) can act as a hapten in the direct immunization of animals. For antigen synthesis, 65 mg of viroid RNA were obtained by transcription of the recombinant DNA. We received a reasonable immune response in mice and rabbits with synthesized conjugate viroid RNA-lysozyme.
View Article and Find Full Text PDFDeep Brain Stimulation (DBS) is an efficacious treatment option for an increasing range of brain disorders. To enhance our knowledge about the mechanisms of action of DBS and to probe novel targets, basic research in animal models with DBS is an essential research base. Beyond nonhuman primate, pig, and mouse models, the rat is a widely used animal model for probing DBS effects in basic research.
View Article and Find Full Text PDFBackground: Finding the optimal deep brain stimulation (DBS) parameters from a multitude of possible combinations by trial and error is time consuming and requires highly trained medical personnel.
Objective: We developed an automated algorithm to identify optimal stimulation settings in Parkinson's disease (PD) patients treated with subthalamic nucleus (STN) DBS based on imaging-derived metrics.
Methods: Electrode locations and monopolar review data of 612 stimulation settings acquired from 31 PD patients were used to train a predictive model for therapeutic and adverse stimulation effects.
The globus pallidus internus and the subthalamic nucleus are common targets for deep brain stimulation to alleviate symptoms of Parkinson's disease and dystonia. In the rodent models, however, their direct targeting is hindered by the relatively large dimensions of applied electrodes. To reduce the neurological damage, the electrodes are usually implanted cranial to the nuclei, thus exposing the non-targeted brain regions to large electric fields and, in turn, possible undesired stimulation effects.
View Article and Find Full Text PDFThe diversity of organisms, tissues and cells is so great that, to date, no universal method for RNA extraction from these biological materials exist. The RNA isolation technique with a mix of guanidine thiocyanate, phenol, and chloroform is most widely used. Extraction and purification of RNA methods using selling guanidinium-phenol (TRIzol)-based and silica-based column kits have limitations on toxicity, or RNA isolation, particularly for plants, and scaling.
View Article and Find Full Text PDFWe tested for fire-induced (5-6 years post-fire) changes in the structure and functioning of the soil food web along a 3000-km north-south transect across European Russia, spanning all major forest types in the northern hemisphere outside the tropics. The total biomass of the detrital food web, including microbes and invertebrates, was not affected by fire. However, fire reduced the biomass of microfauna and mites, but had no impact on mesofauna or macrofauna.
View Article and Find Full Text PDFIn this study, we propose a new open-source simulation platform that comprises computer-aided design and computer-aided engineering tools for highly automated evaluation of electric field distribution and neural activation during Deep Brain Stimulation (DBS). It will be shown how a Volume Conductor Model (VCM) is constructed and examined using Python-controlled algorithms for generation, discretization and adaptive mesh refinement of the computational domain, as well as for incorporation of heterogeneous and anisotropic properties of the tissue and allocation of neuron models. The utilization of the platform is facilitated by a collection of predefined input setups and quick visualization routines.
View Article and Find Full Text PDFA genetically engineered chimeric virus crTMV-CP-PLRV composed of the crucifer-infecting tobacco mosaic virus (crTMV) RNA and the potato leafroll virus (PLRV) coat protein (CP) was obtained by agroinfiltration of with the binary vector pCambia-crTMV-CP The significant levels of the chimeric virus enabled direct visualization of crTMV-CP-PLRV in the cell and to investigate the mechanism of the pathogenesis. Localization of the crTMV-CP-PLRV in plant cells was examined by immunoblot techniques, as well as light, and transmission electron microscopy. The chimera can transfer between vascular and nonvascular tissues.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Rodent models are widely used in research on deep brain stimulation (DBS) for testing hypotheses of the action mechanism. However, differences in anatomy and technology for DBS in humans and rodents might lead to a non-identical effect on the neural activity. Particularly, strong deviations can be introduced by epistemic uncertainties related to the electrode implantation.
View Article and Find Full Text PDFLarge quantities of potato leafroll virus (PLRV) antigen are difficult to obtain because this virus accumulates in plants at a low titer. To overcome this problem, we constructed a binary vector containing chimeric cDNA, in which the coat protein (CP) gene of the crucifer infecting tobacco mosaic virus (crTMV) was substituted for the coat protein gene of PLRV. The PLRV movement protein (MP) gene, which overlaps completely with the CP gene, was doubly mutated to eliminate priming of the PLRV MP translation from ATG codons with no changes to the amino acid sequence of the CP.
View Article and Find Full Text PDF