The newly identified coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes coronavirus disease 2019 (COVID-19) and has affected over 25 million people worldwide as of August 31, 2020. To aid in the development of diagnostic kits for rapid and sensitive detection of the virus, we evaluated a combination of polymerase chain reaction (PCR) and isothermal nucleic acid amplification techniques. Here, we compared conventional PCR and loop-mediated isothermal amplification (LAMP) methods with hybrid techniques such as polymerase chain displacement reaction (PCDR) and a newly developed PCR-LAMP method.
View Article and Find Full Text PDFFragmentation of DNA is the very important first step in preparing nucleic acids for next-generation sequencing. Here we report a novel Fragmentation Through Polymerization (FTP) technique, which is a simple, robust, and low-cost enzymatic method of fragmentation. This method generates double-stranded DNA fragments that are suitable for direct use in NGS library construction and allows the elimination of the additional step of reparation of DNA ends.
View Article and Find Full Text PDFWhole-genome amplification (WGA) techniques are used for non-specific amplification of low-copy number DNA, and especially for single-cell genome and transcriptome amplification. There are a number of WGA methods that have been developed over the years. One example is degenerate oligonucleotide-primed PCR (DOP-PCR), which is a very simple, fast and inexpensive WGA technique.
View Article and Find Full Text PDFThe sensitivity and robustness of various DNA detection and amplification techniques are to a large extent determined by the properties of the DNA polymerase used. We have compared the performance of conventional Taq and Bst DNA polymerases to a novel Taq DNA polymerase mutant (SD DNA polymerase), which has a strong strand displacement activity, in PCR (including amplification of GC-rich and complex secondary structure templates), long-range PCR (LR PCR), loop-mediated amplification (LAMP), and polymerase chain displacement reaction (PCDR). Our results demonstrate that the strand displacement activity of SD DNA polymerase, in combination with the robust polymerase activity, provides a notable improvement in the sensitivity and efficiency of all these methods.
View Article and Find Full Text PDF