The electrodynamic properties of lead zirconate titanate ceramic solid solutions, exhibiting ferro-antiferroelectric phase transition, are investigated at microwave frequencies in a wide temperature range. Significant changes in the electrodynamic response are found, presumably associated with structural rearrangements accompanying the sequence of phase transitions between para-, ferro-, and antiferroelectric states. The phenomena observed in the experiments are considered under conditions of changing temperature and concentrations of the components; several independent measurement techniques were used for their unambiguous identification.
View Article and Find Full Text PDFMaterials (Basel)
March 2022
Ferro-piezoceramic materials (FPCM) with different degrees of ferrohardness were fabricated by double solid-phase synthesis followed by the sintering technique using hot pressing method. The X-ray studies carried out in a wide temperature range showed that with increasing temperature, each of the studied FPCM undergoes a series of phase transformations, accompanied by a change in the symmetry of the unit cell. In this case, near the phase transition to the nonpolar cubic phase, in each of the FPCM, the formation of a fuzzy symmetry region is observed, which is characterized by weak distortions and temperature-time instability of the crystal structure.
View Article and Find Full Text PDFFerroelectric ceramic materials based on the (1-x-y) NaNbO-xKNbO-yCdNbO system ( = 0.05-0.65, = 0.
View Article and Find Full Text PDF