Appl Environ Microbiol
November 2017
RNA stable isotope probing and high-throughput sequencing were used to characterize the active microbiomes of bacteria and fungi colonizing the roots and rhizosphere soil of oilseed rape to identify taxa assimilating plant-derived carbon following CO labeling. Root- and rhizosphere soil-associated communities of both bacteria and fungi differed from each other, and there were highly significant differences between their DNA- and RNA-based community profiles. , , , , , , and were the most active bacterial phyla in the rhizosphere soil.
View Article and Find Full Text PDFBackground: Improved understanding of bacterial-fungal interactions in the rhizosphere should assist in the successful application of bacteria as biological control agents against fungal pathogens of plants, providing alternatives to chemicals in sustainable agriculture. Rhizoctonia solani is an important soil-associated fungal pathogen and its chemical treatment is not feasible or economic. The genomes of the plant-associated bacteria Serratia proteamaculans S4 and Serratia plymuthica AS13 have been sequenced, revealing genetic traits that may explain their diverse plant growth promoting activities and antagonistic interactions with R.
View Article and Find Full Text PDF