Acute myeloid leukemia (AML) is a heterogeneous disease characterized by genomic aberrations in oncogenes, cytogenetic abnormalities, and an aberrant epigenetic landscape. Nearly 50% of AML cases will relapse with current treatment. A major source of therapy resistance is the interaction of mesenchymal stroma with leukemic cells resulting in therapeutic protection.
View Article and Find Full Text PDFFAT atypical cadherin 1 (FAT1), a transmembrane protein, is frequently mutated in various cancer types and has been described as context-dependent tumor suppressor or oncogene. The FAT1 gene is mutated in 12-16% of T-cell acute leukemia (T-ALL) and aberrantly expressed in about 54% of T-ALL cases contrasted with absent expression in normal T-cells. Here, we characterized FAT1 expression and profiled the methylation status from T-ALL patients.
View Article and Find Full Text PDFAberrant activity of the SUMOylation pathway has been associated with MYC overexpression and poor prognosis in aggressive B-cell lymphoma (BCL) and other malignancies. Recently developed small-molecule inhibitors of SUMOylation (SUMOi) target the heterodimeric E1 SUMO activation complex (SAE1/UBA2). Here, we report that activated MYC signaling is an actionable molecular vulnerability in vitro and in a preclinical murine in vivo model of MYC-driven BCL.
View Article and Find Full Text PDFActivated SUMOylation is a hallmark of cancer. Starting from a targeted screening for SUMO-regulated immune evasion mechanisms, we identified an evolutionarily conserved function of activated SUMOylation, which attenuated the immunogenicity of tumor cells. Activated SUMOylation allowed cancer cells to evade CD8+ T cell-mediated immunosurveillance by suppressing the MHC class I (MHC-I) antigen-processing and presentation machinery (APM).
View Article and Find Full Text PDFBackground: B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogenous malignancy with poor prognosis in relapsed adult patients. The genetic basis for relapse in aneuploid subtypes such as near haploid (NH) and high hyperdiploid (HeH) BCP-ALL is only poorly understood. Pathogenic genetic alterations remain to be identified.
View Article and Find Full Text PDFAberrant CXCR4 activity has been implicated in lymphoma pathogenesis, disease progression, and resistance to therapies. Using a mouse model with a gain-of-function CXCR4 mutation (CXCR4) that hyperactivates CXCR4 signaling, we identified CXCR4 as a crucial activator of multiple key oncogenic pathways. CXCR4 hyperactivation resulted in an expansion of transitional B1 lymphocytes, which represent the precursors of chronic lymphocytic leukemia (CLL).
View Article and Find Full Text PDFRecent efforts reclassified B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL) into more refined subtypes. Nevertheless, outcomes of relapsed BCP-ALL remain unsatisfactory, particularly in adult patients where the molecular basis of relapse is still poorly understood. To elucidate the evolution of relapse in BCP-ALL, we established a comprehensive multi-omics dataset including DNA-sequencing, RNA-sequencing, DNA methylation array and proteome MASS-spec data from matched diagnosis and relapse samples of BCP-ALL patients (n = 50) including the subtypes DUX4, Ph-like and two aneuploid subtypes.
View Article and Find Full Text PDFChromosomal rearrangements and specific aneuploidy patterns are initiating events and define subgroups in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Here we analyzed 250 BCP-ALL cases and identified a novel subgroup ('PAX5-plus', n = 19) by distinct DNA methylation and gene expression profiles. All patients in this subgroup harbored mutations in the B-lineage transcription factor PAX5, with p.
View Article and Find Full Text PDFBackground: Long non-coding RNAs (lncRNAs) have emerged as a novel class of RNA due to its diverse mechanism in cancer development and progression. However, the role and expression pattern of lncRNAs in molecular subtypes of B cell acute lymphoblastic leukemia (BCP-ALL) have not yet been investigated. Here, we assess to what extent lncRNA expression and DNA methylation is driving the progression of relapsed BCP-ALL subtypes and we determine if the expression and DNA methylation profile of lncRNAs correlates with established BCP-ALL subtypes.
View Article and Find Full Text PDF