Publications by authors named "Konry T"

Progress in developing improvements in the treatment of autoimmune disease has been gradual, due to challenges presented by the nature of these conditions. Namely, the need to suppress a patient's immune response while maintaining the essential activity of the immune system in controlling disease. Targeted treatments to eliminate the autoreactive immune cells driving disease symptoms present a promising new option for major improvements in treatment efficacy and side effect management.

View Article and Find Full Text PDF

Background: To accelerate the translation of novel immunotherapeutic treatment approaches, the development of analytic methods to assess their efficacy at early in vitro stages is necessary. Using a droplet-based microfluidic platform, we have established a method for multiparameter quantifiable phenotypic and genomic observations of immunotherapies. Chimeric antigen receptor (CAR) natural killer (NK) cells are of increased interest in the current immunotherapy landscape and thus provide an optimal model for evaluating our novel methodology.

View Article and Find Full Text PDF

Recent advances in single-cell and multicellular microfluidics technology have provided powerful tools for studying cancer biology and immunology. The ability to create controlled microenvironments, perform high-throughput screenings, and monitor cellular interactions at the single-cell level has significantly advanced our understanding of tumor biology and immune responses. We discuss cutting-edge multicellular and single-cell microfluidic technologies and methodologies utilized to investigate cancer-immune cell interactions and assess the effectiveness of immunotherapies.

View Article and Find Full Text PDF

For over two decades, Rituximab and CHOP combination treatment (rCHOP) has remained the standard treatment approach for diffuse large B-cell lymphoma (DLBCL). Despite numerous clinical trials exploring treatment alternatives, few options have shown any promise at further improving patient survival and recovery rates. A wave of new therapeutic approaches have recently been in development with the rise of immunotherapy for cancer, however, the cost of clinical trials is prohibitive of testing all promising approaches.

View Article and Find Full Text PDF

The study of molecular mechanisms at the single-cell level holds immense potential for enhancing immunotherapy and understanding neuroinflammation and neurodegenerative diseases by identifying previously concealed pathways within a diverse range of paired cells. However, existing single-cell pairing platforms have limitations in low pairing efficiency, complex manual operation procedures, and single-use functionality. Here, we report a multiparametric cellular immunity analysis by a modular acoustofluidic platform: CIAMAP.

View Article and Find Full Text PDF

SARS-CoV-2 has remained a global health burden, primarily due to the continuous evolution of different mutant strains. These mutations present challenges to the detection of the virus, as the target genes of qPCR, the standard diagnostic method, may possess sequence alterations. In this study, we develop an isothermal one-step detection method using rolling circle amplification (RCA) for SARS-CoV-2.

View Article and Find Full Text PDF

Most common methods of cellular analysis employ the top-down approach (investigating proteomics or genomics directly), thereby destroying the cell, which does not allow the possibility of using the same cell to correlate genomics with functional assays. Herein we describe an approach for single-cell tools that serve as a bottom-up approach. Our technology allows functional phenotyping to be conducted by observing the cytotoxicity of cells and then probe the underlying biology.

View Article and Find Full Text PDF

Achievement of a high dose of drug in the tumor while minimizing its systemic side effects is one of the important features of an improved drug delivery system. Thus, developing responsive carriers for site-specific delivery of chemotherapeutic agents has become a main goal of research efforts. One of the known hallmarks of cancerous tumors is hypoxia, which offers a target for selective drug delivery.

View Article and Find Full Text PDF

DCP-001 is a cell-based cancer vaccine generated by differentiation and maturation of cells from the human DCOne myeloid leukemic cell line. This results in a vaccine comprising a broad array of endogenous tumor antigens combined with a mature dendritic cell (mDC) costimulatory profile, functioning as a local inflammatory adjuvant when injected into an allogeneic recipient. Intradermal DCP-001 vaccination has been shown to be safe and feasible as a post-remission therapy in acute myeloid leukemia.

View Article and Find Full Text PDF

Droplet microfluidics has revolutionized the biomedical and drug development fields by allowing for independent microenvironments to conduct drug screening at the single cell level. However, current microfluidic sorting devices suffer from drawbacks such as high voltage requirements (e.g.

View Article and Find Full Text PDF

Cancer is driven by both genetic aberrations in the tumor cells and fundamental changes in the tumor microenvironment (TME). These changes offer potential targets for novel therapeutics, yet lack of in vitro 3D models recapitulating this complex microenvironment impedes such progress. Here, we generated several tumor-stroma scaffolds reflecting the dynamic in vivo breast TME, using a high throughput microfluidic system.

View Article and Find Full Text PDF

We recently reported that cyclic thiosulfinates are cysteine selective cross-linkers that avoid the "dead-end" modifications that contribute to other cross-linkers' toxicity. In this study, we generalize the chemistry of cyclic thiosulfinates to that of thiol selective cross-linking and apply them to the synthesis of hydrogels. Thiol-functionalized four-arm poly(ethylene glycol) and hyaluronic acid monomers were cross-linked with 1,2-dithiane-1-oxide to form disulfide cross-linked hydrogels within seconds.

View Article and Find Full Text PDF

Replication of physiological oxygen levels is fundamental for modeling human physiology and pathology inmodels. Environmental oxygen levels, applied in mostmodels, poorly imitate the oxygen conditions cells experience, where oxygen levels average ∼5%. Most solid tumors exhibit regions of hypoxic levels, promoting tumor progression and resistance to therapy.

View Article and Find Full Text PDF

The inhibition of the PD1/PDL1 pathway has led to remarkable clinical success for cancer treatment in some patients. Many, however, exhibit little to no response to this treatment. To increase the efficacy of PD1 inhibition, additional checkpoint inhibitors are being explored as combination therapy options.

View Article and Find Full Text PDF

Natural killer (NK) cells have emerged as an effective alternative option to T cell-based immunotherapies, particularly against liquid (hematologic) tumors. However, the effectiveness of NK cell therapy has been less than optimal for solid tumors, partly due to the heterogeneity in target interaction leading to variable anti-tumor cytotoxicity. This paper describes a microfluidic droplet-based cytotoxicity assay for quantitative comparison of immunotherapeutic NK-92 cell interaction with various types of target cells.

View Article and Find Full Text PDF

We investigated the cytolytic and mechanistic activity of anti-CD19 chimeric antigen receptor natural killer (CD19.CAR.NK92) therapy in lymphoma cell lines (diffuse large B-cell, follicular, and Burkitt lymphoma), including rituximab- and obinutuzumab-resistant cells, patient-derived cells, and a human xenograft model.

View Article and Find Full Text PDF

Immune-targeted therapies that activate effector lymphocytes such as Natural Killer (NK) cells are currently being investigated for the treatment of Multiple myeloma (MM), the second most common form of hematological cancer. However, individual NK cells are highly heterogeneous in their cytolytic potential, making it difficult to detect, quantify and correlate the outcome of dynamic effector-target cell interactions at single cell resolution. Here, we present a microfluidic bioassay platform capable of activity-based screening of cellular and molecular immunotherapies.

View Article and Find Full Text PDF

Antimicrobial susceptibility testing (AST) is an essential diagnostic procedure to determine the correct course of treatment for various types of pathogen infections. Patients are treated with broad spectrum antibiotics until AST results become available, which has contributed to the emergence of multidrug resistant bacteria worldwide. Conventional AST methods require 16-24 h to assess sensitivity of the bacteria to a given drug and establish its minimum inhibitory concentration (MIC).

View Article and Find Full Text PDF

Diffuse large B cell lymphoma (DLBCL), the most common subtype of Non-Hodgkin lymphoma, exhibits pathologic heterogeneity and a dynamic immunogenic tumor microenvironment (TME). However, the lack of preclinical in vitro models of DLBCL TME hinders optimal therapeutic screening. This study describes the development of an integrated droplet microfluidics-based platform for high-throughput generation of immunogenic DLBCL spheroids.

View Article and Find Full Text PDF

Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes that recognize and kill cancer cells. The susceptibility of target cancer cells to NK cell-mediated cytotoxicity depends on the strength and balance of regulatory (activating/inhibitory) ligands expressed on target cell surface. We performed gene expression arrays to determine patterns of NK cell ligands associated with B-cell non-Hodgkin lymphoma (b-NHL).

View Article and Find Full Text PDF

The mechanics of cancer cell adhesion to its neighboring cells, homotypic or heterotypic, have significant impact on tumor progression and metastasis. Intercellular adhesion has been quantified previously using atomic force microscopy-based methods. Here we show the feasibility of the recently developed fluidic force microscopy (FluidFM) to measure adhesive forces exerted by breast cancer cells.

View Article and Find Full Text PDF

Cell-cell communication mediates immune responses to physiological stimuli at local and systemic levels. Intercellular communication occurs via a direct contact between cells as well as by secretory contact-independent mechanisms. However, there are few existing methods that allow quantitative resolution of contact-dependent and independent cellular processes in a rapid, precisely controlled, and dynamic format.

View Article and Find Full Text PDF

Microfluidic droplets are used to isolate cell pairs and prevent crosstalk with neighboring cells, while permitting free motility and interaction within the confined space. Dynamic analysis of cellular heterogeneity in droplets has provided insights in various biological processes. Droplet manipulation methods such as fusion and fission make it possible to precisely regulate the localized environment of a cell in a droplet and deliver reagents as required.

View Article and Find Full Text PDF

Isothermal rolling circle amplification (RCA) is used to detect nucleic and non-nucleic acid biomarkers with high sensitivity. Immuno-RCA, the specific detection of proteins via antigen-antibody recognition, has been miniaturized for microfluidic platforms to reduce reagent and sample consumption, accelerate reaction kinetics, and enhance the sensitivity and specificity of detection.

View Article and Find Full Text PDF

Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities.

View Article and Find Full Text PDF