The intestinal microbiota is a complex and diverse ecological community that fulfills multiple functions and substantially impacts human health. Despite its plasticity, unfavorable conditions can cause perturbations leading to so-called dysbiosis, which have been connected to multiple diseases. Unfortunately, understanding the mechanisms underlying the crosstalk between those microorganisms and their host is proving to be difficult.
View Article and Find Full Text PDFBackground: Recent evidence suggests a role for the microbiome in pancreatic ductal adenocarcinoma (PDAC) aetiology and progression.
Objective: To explore the faecal and salivary microbiota as potential diagnostic biomarkers.
Methods: We applied shotgun metagenomic and 16S rRNA amplicon sequencing to samples from a Spanish case-control study (n=136), including 57 cases, 50 controls, and 29 patients with chronic pancreatitis in the discovery phase, and from a German case-control study (n=76), in the validation phase.
Purpose: Infections from the oral microbiome may lead to exacerbations of chronic obstructive pulmonary disease (COPD). We investigated whether advanced dental cleaning could reduce exacerbation frequency. Secondary outcomes were disease-specific health status, lung function, and whether the bacterial load and composition of plaque microbiome at baseline were associated with a difference in outcomes.
View Article and Find Full Text PDFThe human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing issues. To address these, we developed SIAMCAT, a versatile R toolbox for ML-based comparative metagenomics.
View Article and Find Full Text PDFAssociation studies have linked microbiome alterations with many human diseases. However, they have not always reported consistent results, thereby necessitating cross-study comparisons. Here, a meta-analysis of eight geographically and technically diverse fecal shotgun metagenomic studies of colorectal cancer (CRC, n = 768), which was controlled for several confounders, identified a core set of 29 species significantly enriched in CRC metagenomes (false discovery rate (FDR) < 1 × 10).
View Article and Find Full Text PDFBackground: Genetic studies in tetraploids are lagging behind in comparison with studies of diploids as the complex genetics of tetraploids require much more elaborated computational methodologies. Recent advancements in development of molecular techniques and computational tools facilitate new methods for automated, high-throughput genotype calling in tetraploid species. We report on the upgrade of the widely-used fitTetra software aiming to improve its accuracy, which to date is hampered by technical artefacts in the data.
View Article and Find Full Text PDFThe biosynthetic machinery responsible for the production of bacterial specialised metabolites is encoded by physically clustered group of genes called biosynthetic gene clusters (BGCs). The experimental characterisation of numerous BGCs has led to the elucidation of subclusters of genes within BGCs, jointly responsible for the same biosynthetic function in different genetic contexts. We developed an unsupervised statistical method able to successfully detect a large number of modules (putative functional subclusters) within an extensive set of predicted BGCs in a systematic and automated manner.
View Article and Find Full Text PDFIn high-throughput molecular profiling studies, genotype labels can be wrongly assigned at various experimental steps; the resulting mislabeled samples seriously reduce the power to detect the genetic basis of phenotypic variation. We have developed an approach to detect potential mislabeling, recover the "ideal" genotype and identify "best-matched" labels for mislabeled samples. On average, we identified 4% of samples as mislabeled in eight published datasets, highlighting the necessity of applying a "data cleaning" step before standard data analysis.
View Article and Find Full Text PDFBackground: Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs.
View Article and Find Full Text PDFInteractions between proteins are highly conserved across species. As a result, the molecular basis of multiple diseases affecting humans can be studied in model organisms that offer many alternative experimental opportunities. One such organism-Caenorhabditis elegans-has been used to produce much molecular quantitative genetics and systems biology data over the past decade.
View Article and Find Full Text PDF