Publications by authors named "Konrad Wojciechowski"

Computer simulations using ever-increasing computing power and machine learning techniques allow advanced molecular modelling, molecular dynamics simulations and studies of intermolecular interactions. However, due to the complexity of biological systems and chemical processes at the molecular level, their accurate representation using classical computer models and techniques has faced a number of significant limitations for many years. A new and promising direction for the development of computational science and its potential applications in biochemistry is quantum computing and its integration with classical high-performance supercomputing systems.

View Article and Find Full Text PDF

Introduction: It is proved that there are differences between gait performed by females and males, which appear in movements of selected body parts. Despite numerous state-of-the-art studies related to the discriminative analysis of motion capture data, the question of whether measures of signal complexity and uncertainty can extract valuable features for the problem of sex distinction still remains open. It is the subject of the paper.

View Article and Find Full Text PDF

This work is focused on the preliminary stage of the 3D drone tracking challenge, namely the precise detection of drones on images obtained from a synchronized multi-camera system. The YOLOv5 deep network with different input resolutions is trained and tested on the basis of real, multimodal data containing synchronized video sequences and precise motion capture data as a ground truth reference. The bounding boxes are determined based on the 3D position and orientation of an asymmetric cross attached to the top of the tracked object with known translation to the object's center.

View Article and Find Full Text PDF

The paper presents a comprehensive overview of intelligent video analytics and human action recognition methods. The article provides an overview of the current state of knowledge in the field of human activity recognition, including various techniques such as pose-based, tracking-based, spatio-temporal, and deep learning-based approaches, including visual transformers. We also discuss the challenges and limitations of these techniques and the potential of modern edge AI architectures to enable real-time human action recognition in resource-constrained environments.

View Article and Find Full Text PDF

Re-creating the movement of an object consisting of articulated rigid bodies is an issue that concerns both mechanical and biomechanical systems. In the case of biomechanical systems, movement re-storation allows, among other things, introducing changes in training or rehabilitation exercises. Motion recording, both in the case of mechanical and biomechanical systems, can be carried out with the use of sensors recording motion parameters or vision systems and with hybrid solutions.

View Article and Find Full Text PDF

The synthesis and characterization of a family of indene-C adducts obtained Diels-Alder cycloaddition [4 + 2] are reported. The new C derivatives include indenes with a variety of functional groups. These adducts show lowest unoccupied molecular orbital energy levels to be at the right position to consider these compounds as electron-transporting materials for planar heterojunction perovskite solar cells.

View Article and Find Full Text PDF

Perovskite solar modules (PSMs) have been attracting the photovoltaic market, owing to low manufacturing costs and process versatility. The employment of flexible substrates gives the chance to explore new applications and further increase the fabrication throughput. However, the present state-of-the-art of flexible perovskite solar modules (FPSMs) does not show any data on light-soaking stability, revealing that the scientific community is still far from the potential marketing of the product.

View Article and Find Full Text PDF

Tracking and action-recognition algorithms are currently widely used in video surveillance, monitoring urban activities and in many other areas. Their development highly relies on benchmarking scenarios, which enable reliable evaluations/improvements of their efficiencies. Presently, benchmarking methods for tracking and action-recognition algorithms rely on manual annotation of video databases, prone to human errors, limited in size and time-consuming.

View Article and Find Full Text PDF

The ability of the locomotor system to maintain continuous walking despite very small external or internal disturbances is called local dynamic stability (LDS). The importance of the LDS requires constantly working on different aspects of its assessment method which is based on the short-term largest Lyapunov exponent (LLE). A state space structure is a vital aspect of the LDS assessment because the algorithm of the LLE computation for experimental data requires a reconstruction of a state space trajectory.

View Article and Find Full Text PDF

Despite fast development of hybrid perovskite solar cells, there are many fundamental questions related to the perovskite film which remain open. For example, there are contradicting theoretical reports on the role of the organic methylammonium cation (CH NH ) in the methylammonium lead triiodide (CH NH PbI ) perovskite film. From one side it is reported that the organic cation does not contribute to electronic structure of the CH NH PbI film.

View Article and Find Full Text PDF

Introduction: Deficits in area of communication, crucial for maintaining proper social bonds, may have a prominent adverse impact on quality of life in patients with schizophrenia. Social exclusion, lack of employment and deterioration of family life, may be consequences of aggravated social competencies, caused by inability to properly exhibit and interpret facial expressions. Although this phenomenon is known since first clinical descriptions of schizophrenia, lack of proper methodology limited our knowledge in this area.

View Article and Find Full Text PDF

The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system.

View Article and Find Full Text PDF

The number of patients with heart failure implantable cardiac electronic devices (CIEDs) is growing. Hospitalization rate in this group is very high and generates enormous costs. To avoid the need for hospital treatment, optimized monitoring and follow-up is crucial.

View Article and Find Full Text PDF

In this work, solar cells with a freshly made CH NH PbI perovskite film showed a power conversion efficiency (PCE) of 15.4 % whereas the one with 50 days aged perovskite film only 6.1 %.

View Article and Find Full Text PDF

Air-stable doping of the n-type fullerene layer in an n-i-p planar heterojunction perovskite device is capable of enhancing device efficiency and improving device stability. Employing a (HC(NH ) ) Cs Pb(I Br ) perovskite as the photoactive layer, glass-glass laminated devices are reported, which sustain 80% of their "post burn-in" efficiency over 3400 h under full sun illumination in ambient conditions.

View Article and Find Full Text PDF

Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction.

View Article and Find Full Text PDF

Organic-inorganic halide perovskite solar cells have recently emerged as high-performance photovoltaic devices with low cost, promising for affordable large-scale energy production, with laboratory cells already exceeding 20% power conversion efficiency (PCE). To date, a relatively expensive organic hole-conducting molecule with low conductivity, namely spiro-OMeTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine) 9,9'- spirobifluorene), is employed widely to achieve highly efficient perovskite solar cells. Here, we report that by replacing spiro-OMeTAD with much cheaper and highly conductive poly(3,4-ethylenedioxythiophene) (PEDOT) we can achieve PCE of up to 14.

View Article and Find Full Text PDF

We report the synthesis and the optoelectronic characterization of three new 4H-pyran-4-ylidene and thiazole derivatives (pyt) as metal-free organic dyes for solid-state dye-sensitized solar cells (DSSCs). We investigate the performance and the long-term stability of devices employing pyt dyes functionalized with carboxylic and phosphonic acids as TiO2 anchoring groups. In contrast to reports on liquid electrolyte DSSCs, we show that solid-state DSSCs prepared with phosphoric pyt derivatives can achieve similar power conversion efficiency to their carboxyl analogues.

View Article and Find Full Text PDF

Organic-inorganic perovskites are highly promising solar cell materials with laboratory-based power conversion efficiencies already matching those of established thin film technologies. Their exceptional photovoltaic performance is in part attributed to the presence of efficient radiative recombination pathways, thereby opening up the possibility of efficient light-emitting devices. Here, we demonstrate optically pumped amplified spontaneous emission (ASE) at 780 nm from a 50 nm-thick film of CH3NH3PbI3 perovskite that is sandwiched within a cavity composed of a thin-film (∼7 μm) cholesteric liquid crystal (CLC) reflector and a metal back-reflector.

View Article and Find Full Text PDF

Organic-inorganic perovskites, such as CH3NH3PbX3 (X=I, Br, Cl), have emerged as attractive absorber materials for the fabrication of low cost high efficiency solar cells. Over the last 3 years, there has been an exceptional rise in power conversion efficiencies (PCEs), demonstrating the outstanding potential of these perovskite materials. However, in most device architectures, including the simplest thin-film planar structure, a current-voltage response displays an "anomalous hysteresis", whereby the power output of the cell varies with measurement time, direction and light exposure or bias history.

View Article and Find Full Text PDF

A self-adhesive laminate solar-cell electrode is presented based on a metal grid embedded in a polymer film (x-y conduction) and set in contact with the active layer using a pressure-sensitive adhesive containing a very low quantity (1.8%) of organic conductor, which self-organizes to provide z conduction to the grid. This ITO-free material performs in an identical fashion to evaporated gold in high-efficiency perovskite solar cells.

View Article and Find Full Text PDF

Organic-inorganic halide perovskites, such as CH3NH3PbX3 (X = I(-), Br(-), Cl(-)), are attracting growing interest to prepare low-cost solar cells that are capable of converting sunlight to electricity at the highest efficiencies. Despite negligible effort on enhancing materials' purity or passivation of surfaces, high efficiencies have already been achieved. Here, we show that trap states at the perovskite surface generate charge accumulation and consequent recombination losses in working solar cells.

View Article and Find Full Text PDF

Perovskite solar cells have rapidly risen to the forefront of emerging photovoltaic technologies, exhibiting rapidly rising efficiencies. This is likely to continue to rise, but in the development of these solar cells there are unusual characteristics that have arisen, specifically an anomalous hysteresis in the current-voltage curves. We identify this phenomenon and show some examples of factors that make the hysteresis more or less extreme.

View Article and Find Full Text PDF

Organolead trihalide perovskite solar cells based upon the co-deposition of a combined Al2O3-perovskite layer at T < 110 °C are presented. We report an average PCE = 7.2% on a non-sintered Al2O3 scaffold in devices that have been manufactured from a perovskite precursor containing 5 wt% Al2O3 nanoparticles.

View Article and Find Full Text PDF