Publications by authors named "Konrad Wissenbach"

Since large bone defects cannot be healed by the body itself, continuous effort is put into the development of 3D scaffolds for bone tissue engineering. One method to fabricate such scaffolds is selective laser sintering (SLS). However, there is a lack of solvent-free prepared microparticles suitable for SLS.

View Article and Find Full Text PDF

Complex 3D scaffolds with interconnected pores are a promising tool for bone regeneration. Such 3D scaffolds can be manufactured by selective laser sintering (SLS) from biodegradable composite powders. However, the mechanical strength of these scaffolds is often too low for medical application.

View Article and Find Full Text PDF

In-stent restenosis is still an important issue and stent thrombosis is an unresolved risk after coronary intervention. Biodegradable stents would provide initial scaffolding of the stenosed segment and disappear subsequently. The additive manufacturing technology Selective Laser Melting (SLM) enables rapid, parallel, and raw material saving generation of complex 3- dimensional structures with extensive geometric freedom and is currently in use in orthopedic or dental applications.

View Article and Find Full Text PDF

The additive manufacturing technique selective laser melting (SLM) has been successfully proved to be suitable for applications in implant manufacturing. SLM is well known for metal parts and offers direct manufacturing of three-dimensional (3D) parts with high bulk density on the base of individual 3D data, including computer tomography models of anatomical structures. Furthermore, an interconnecting porous structure with defined and reproducible pore size can be integrated during the design of the 3D virtual model of the implant.

View Article and Find Full Text PDF