Publications by authors named "Konrad Wagstyl"

Article Synopsis
  • Hippocampal sclerosis (HS) is a major cause of temporal lobe epilepsy (TLE) but can be hard to detect on MRI, leading to surgical delays, so researchers created open-source software to improve diagnosis.
  • The study involved 365 participants, using the software HippUnfold to analyze MRI scans and develop a logistic regression model that accurately identifies and localizes HS.
  • The classifier showed high accuracy in detecting HS in both initial and independent patient cohorts, proving effective for individual assessments by comparing patient data with normative growth patterns.
View Article and Find Full Text PDF

Background: Malformations of cortical development (MCDs) in children with focal epilepsy pose significant diagnostic challenges, and a precise radiological diagnosis is crucial for surgical planning. New MRI sequences and the use of artificial intelligence (AI) algorithms are considered very promising in this regard, yet studies evaluating the relative contribution of each diagnostic technique are lacking.

Methods: The study was conducted using a dedicated "EPI-MCD MR protocol" with a 3 Tesla MRI scanner in patients with focal epilepsy and previously negative MRI.

View Article and Find Full Text PDF

We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (n = 34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bimodal distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex, and complex sulci were less heritable and typically located in heteromodal cortex.

View Article and Find Full Text PDF

Cortical arealization arises during neurodevelopment from the confluence of molecular gradients representing patterned expression of morphogens and transcription factors. However, whether similar gradients are maintained in the adult brain remains unknown. Here, we uncover three axes of topographic variation in gene expression in the adult human brain that specifically capture previously identified rostral-caudal, dorsal-ventral, and medial-lateral axes of early developmental patterning.

View Article and Find Full Text PDF

Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations.

View Article and Find Full Text PDF

Human brain organization involves the coordinated expression of thousands of genes. For example, the first principal component (C1) of cortical transcription identifies a hierarchy from sensorimotor to association regions. In this study, optimized processing of the Allen Human Brain Atlas revealed two new components of cortical gene expression architecture, C2 and C3, which are distinctively enriched for neuronal, metabolic and immune processes, specific cell types and cytoarchitectonics, and genetic variants associated with intelligence.

View Article and Find Full Text PDF

Neuropsychological impairments are common in children with drug-resistant epilepsy. It has been proposed that epilepsy surgery might alleviate these impairments by providing seizure freedom; however, findings from prior studies have been inconsistent. We mapped long-term neuropsychological trajectories in children before and after undergoing epilepsy surgery, to measure the impact of disease course and surgery on functioning.

View Article and Find Full Text PDF

The cerebral cortex underlies many of our unique strengths and vulnerabilities, but efforts to understand human cortical organization are challenged by reliance on incompatible measurement methods at different spatial scales. Macroscale features such as cortical folding and functional activation are accessed through spatially dense neuroimaging maps, whereas microscale cellular and molecular features are typically measured with sparse postmortem sampling. Here, we integrate these distinct windows on brain organization by building upon existing postmortem data to impute, validate, and analyze a library of spatially dense neuroimaging-like maps of human cortical gene expression.

View Article and Find Full Text PDF

When planning for epilepsy surgery, multiple potential sites for resection may be identified through anatomical imaging. Magnetoencephalography (MEG) using optically pumped sensors (OP-MEG) is a non-invasive functional neuroimaging technique which could be used to help identify the epileptogenic zone from these candidate regions. Here we test the utility of a-priori information from anatomical imaging for differentiating potential lesion sites with OP-MEG.

View Article and Find Full Text PDF

We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (N=34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bipolar distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex; complex sulci were less heritable and typically located in heteromodal cortex.

View Article and Find Full Text PDF

Human brain size changes dynamically through early development, peaks in adolescence, and varies up to 2-fold among adults. However, the molecular genetic underpinnings of interindividual variation in brain size remain unknown. Here, we leveraged postmortem brain RNA sequencing and measurements of brain weight (BW) in 2,531 individuals across three independent datasets to identify 928 genome-wide significant associations with BW.

View Article and Find Full Text PDF

The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences.

View Article and Find Full Text PDF

Aim: To evaluate a lesion detection algorithm designed to detect focal cortical dysplasia (FCD) in children undergoing stereoelectroencephalography (SEEG) as part of their presurgical evaluation for drug-resistant epilepsy.

Method: This was a prospective, single-arm, interventional study (Idea, Development, Exploration, Assessment, and Long-Term Follow-Up phase 1/2a). After routine SEEG planning, structural magnetic resonance imaging sequences were run through an FCD lesion detection algorithm to identify putative clusters.

View Article and Find Full Text PDF

Objective: Neurosurgery is a safe and effective form of treatment for select children with drug-resistant epilepsy. Still, there is concern that it remains underutilized, and that seizure freedom rates have not improved over time. We investigated referral and surgical practices, patient characteristics, and postoperative outcomes over the past two decades.

View Article and Find Full Text PDF

Objective: The accurate prediction of seizure freedom after epilepsy surgery remains challenging. We investigated if (1) training more complex models, (2) recruiting larger sample sizes, or (3) using data-driven selection of clinical predictors would improve our ability to predict postoperative seizure outcome using clinical features. We also conducted the first substantial external validation of a machine learning model trained to predict postoperative seizure outcome.

View Article and Find Full Text PDF

Focal cortical dysplasias (FCDs) are malformations of cortical development and one of the most common pathologies causing pharmacoresistant focal epilepsy. Resective neurosurgery yields high success rates, especially if the full extent of the lesion is correctly identified and completely removed. The visual assessment of magnetic resonance imaging does not pinpoint the FCD in 30%-50% of cases, and half of all patients with FCD are not amenable to epilepsy surgery, partly because the FCD could not be sufficiently localized.

View Article and Find Full Text PDF

Mesoscopic (0.1-0.5 mm) interrogation of the living human brain is critical for advancing neuroscience and bridging the resolution gap with animal models.

View Article and Find Full Text PDF

One outstanding challenge for machine learning in diagnostic biomedical imaging is algorithm interpretability. A key application is the identification of subtle epileptogenic focal cortical dysplasias (FCDs) from structural MRI. FCDs are difficult to visualize on structural MRI but are often amenable to surgical resection.

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate if focal cortical dysplasia (FCD) co-localization to cortical functional networks is associated with the temporal distribution of epilepsy onset in FCD.

Methods: International (20 center), retrospective cohort from the Multi-Centre Epilepsy Lesion Detection (MELD) project. Patients included if >3 years old, had 3D pre-operative T1 magnetic resonance imaging (MRI; 1.

View Article and Find Full Text PDF

Epilepsy and epilepsy surgery lend themselves well to the application of machine learning (ML) and artificial intelligence (AI) technologies. This is evidenced by the plethora of tools developed for applications such as seizure detection and analysis of imaging and electrophysiological data. However, few of these tools have been directly used to guide patient management.

View Article and Find Full Text PDF

Objective: Drug-resistant focal epilepsy is often caused by focal cortical dysplasias (FCDs). The distribution of these lesions across the cerebral cortex and the impact of lesion location on clinical presentation and surgical outcome are largely unknown. We created a neuroimaging cohort of patients with individually mapped FCDs to determine factors associated with lesion location and predictors of postsurgical outcome.

View Article and Find Full Text PDF

The topological organization of the cerebral cortex provides hierarchical axes, namely gradients, which reveal systematic variations of brain structure and function. However, the hierarchical organization of macroscopic brain morphology and how it constrains cortical function along the organizing axes remains unclear. We map the gradient of cortical morphometric similarity (MS) connectome, combining multiple features conceptualized as a "fingerprint" of an individual's brain.

View Article and Find Full Text PDF

Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices.

View Article and Find Full Text PDF