Dynamic recrystallisation (DRX) is one of the fundamental phenomena in materials science, significantly impacting the microstructure and mechanical properties of components subjected to large plastic deformations. Experimental research on that topic carried out for a wide range of new metallic materials is often supported by computational materials science. A direct consideration and detailed understanding of this phenomenon are possible with a class of full-field numerical models based on the cellular automata (CA) method.
View Article and Find Full Text PDFNumerical study of the influence of pulsed laser deposited TiN thin films' microstructure morphologies on strain heterogeneities during loading was the goal of this research. The investigation was based on the digital material representation (DMR) concept applied to replicate an investigated thin film's microstructure morphology. The physically based pulsed laser deposited model was implemented to recreate characteristic features of a thin film microstructure.
View Article and Find Full Text PDF