Publications by authors named "Konrad Kosciow"

5-Keto-D-fructose (5-KF) is a natural diketone occurring in micromolar concentrations in honey, white wine, and vinegar. The oxidation of D-fructose to 5-KF is catalyzed by the membrane-bound fructose dehydrogenase complex found in several acetic acid bacteria. Since 5-KF has a sweetening power comparable to fructose and is presumably calorie-free, there is great interest in making the diketone commercially available as a new sugar substitute.

View Article and Find Full Text PDF

Sucrases can modify numerous carbohydrates, and short-chain oligosaccharides produced by the unique transfructosylation activity of levansucrases are promising candidates for the growing sugar substitute market. These compounds could counteract the increasing number of diseases associated with the consumption of high-calorie sugars. Thus, there is great interest in the characterization of novel levansucrases.

View Article and Find Full Text PDF

In recent decades, strategies to improve human health by modulating the gut microbiota have developed rapidly. One of the most prominent is the use of prebiotics, which can lead to a higher abundance of health-promoting microorganisms in the gut. Currently, oligosaccharides dominate the prebiotic sector due to their ability to promote the growth and activity of probiotic bacteria selectively.

View Article and Find Full Text PDF

There is an increasing public awareness about the danger of dietary sugars with respect to their caloric contribution to the diet and the rise of overweight throughout the world. Therefore, low-calorie sugar substitutes are of high interest to replace sugar in foods and beverages. A promising alternative to natural sugars and artificial sweeteners is the fructose derivative 5-keto-D-fructose (5-KF), which is produced by several Gluconobacter species.

View Article and Find Full Text PDF

Prebiotics are known for their ability to modulate the composition of the human microbiome and mediate health-promoting benefits. Endo-levanases, which hydrolyze levan into short-chain FOS, could be used for the production of levan-based prebiotics. The novel endo-levanase (LevB) from Azotobacter chroococcum DSM 2286, combines an exceptionally high specific activity with advantageous hydrolytic properties.

View Article and Find Full Text PDF

Levan, a β-2,6-glycosidic linked fructan, is a promising alternative for the inulin dominated fructan market. Although levan is already used in some cosmetic products, the commercial availability of the fructan is still limited. Here we show that Gluconobacter japonicus LMG 1417 is a potent levan-forming organism and a promising platform for the industrial production of levan.

View Article and Find Full Text PDF

The gut microbe Akkermansia (A.) muciniphila becomes increasingly important as its prevalence is inversely correlated with different human metabolic disorders and diseases. This organism is a highly potent degrader of intestinal mucins and the hydrolyzed glycan compounds can then serve as carbon sources for the organism itself or other members of the gut microbiota via cross-feeding.

View Article and Find Full Text PDF

A promising alternative to high-calorie sugars and artificial sweeteners is the microbially produced fructose derivative 5-ketofructose (5-KF). The key enzyme for biotransformation, fructose dehydrogenase (Fdh), was overproduced in Gluconobacter (G.) oxydans and G.

View Article and Find Full Text PDF

The gut microbe Akkermansia muciniphila is important for the human health as the occurrence of the organism is inversely correlated with different metabolic disorders. The metabolism of the organism includes the degradation of intestinal mucins. Thus, the gut health-promoting properties are not immediately obvious and mechanisms of bacteria-host interactions are mostly unclear.

View Article and Find Full Text PDF

The growing consumer demand for low-calorie, sugar-free foodstuff motivated us to search for alternative non-nutritive sweeteners. A promising sweet-tasting compound is 5-keto-D-fructose (5-KF), which is formed by membrane-bound fructose dehydrogenases (Fdh) in some Gluconobacter strains. The plasmid-based expression of the fdh genes in Gluconobacter (G.

View Article and Find Full Text PDF

Gluconobacter (G.) oxydans strains have great industrial potential due to their ability to incompletely oxidize a wide range of carbohydrates. But there is one major limitation preventing their full production potential.

View Article and Find Full Text PDF

Tetrathionate (S4 O6 (2-) ) is used by some bacteria as an electron acceptor and can be produced in the vertebrate intestinal mucosa from the oxidation of thiosulphate (S2 O3 (2-) ) by reactive oxygen species during inflammation. Surprisingly, growth of the microaerophilic mucosal pathogen Campylobacter jejuni under oxygen-limited conditions was stimulated by tetrathionate, although it does not possess any known type of tetrathionate reductase. Here, we identify a dihaem cytochrome c (C8j_0815; TsdA) as the enzyme responsible.

View Article and Find Full Text PDF