Publications by authors named "Konrad Jarausch"

Advances in electron-based instrumentation have enabled the acquisition of multidimensional data sets for exploring the unique structure-property relationship of nanomaterials. In this manuscript, we report a technique for directly probing and analyzing the three-dimensional (3D) electronic structure of a material at the nano-scale. This technique, referred to here as 4D STEM-EELS, utilizes a rotation holder and pillar-shaped samples to allow STEM mode high-angle annular dark-field (HAADF) and EELS spectrum images to be recorded over a complete 180 degrees rotation to minimize artifacts.

View Article and Find Full Text PDF

The characterization of nanomaterials with complex three-dimensional (3D) geometries is required to further research and enable the continuing development of nanotechnology. In this manuscript, we report a protocol which combines focused ion beam (FIB) milling, thin film deposition and solution chemistry to optimize a rotation holder for 3D structural and chemical analysis of nanoparticles. This protocol is used to customize the geometry, surface and chemistry of a scanning transmission electron microscope (STEM) or transmission electron microscope (TEM) rotation holder for the nanoparticle system of interest.

View Article and Find Full Text PDF

A new EELS (electron energy loss spectroscopy) real-time elemental mapping system has been developed for a dedicated scanning transmission electron microscope (STEM). The previous two-window-based jump-ratio system has been improved by a three-window-based system. It is shown here that the three-window imaging method has less artificial intensity in elemental maps than the two-window-based method.

View Article and Find Full Text PDF

Lead chalcogenide nanostructures are good potential candidates for applications in multiexciton solar cells, infrared photodetectors, and electroluminescence devices. Here we report the synthesis and electrical measurements of hyperbranched PbSe nanowire networks. Hyperbranched PbSe nanowire networks are synthesized via a vapor-liquid-solid (VLS) mechanism.

View Article and Find Full Text PDF

Layered-structure nanoribbons with efficient electron transport and short lithium ion insertion lengths are promising candidates for Li battery applications. Here we studied at the single nanostructure level the chemical, structural, and electrical transformations of V2O5 nanoribbons. We found that transformation of V2O5 into the omega-Li3V2O5 phase depends not only on the width but also the thickness of the nanoribbons.

View Article and Find Full Text PDF

Phase-change memory materials have stimulated a great deal of interest although the size-dependent behaviors have not been well studied due to the lack of method for producing their nanoscale structures. We report the synthesis and characterization of GeTe and Sb(2)Te(3) phase-change nanowires via a vapor-liquid-solid growth mechanism. The as-grown GeTe nanowires have three different types of morphologies: single-crystalline straight and helical rhombohedral GeTe nanowires and amorphous curly GeO(2) nanowires.

View Article and Find Full Text PDF