Silicon carbide has been considered a material for use in the construction of advanced high-temperature nuclear reactors. However, one of the most important design issues for future reactors is the development of structural defects in SiC under a strong irradiation field at high temperatures. To understand how high temperatures affect radiation damage, SiC single crystals were irradiated at room temperature and after being heated to 800 °C with carbon and silicon ions of energies ranging between 0.
View Article and Find Full Text PDFChanges in the atomic and electronic structure of silicon carbide 3C-SiC (β-SiC), resulting from lead adsorption, were studied within the density functional theory. The aim of the study was to analyze the main mechanisms occurring during the corrosion of this material. Therefore, the investigations focused on process-relevant parameters such as bond lengths, bond energies, Bader charges, and charge density differences.
View Article and Find Full Text PDFLow-energy nuclear reactions are known to be extremely dependent on the local crystal structure and crystal defects of the deuterated samples. This has a strong influence on both hydrogen diffusion and the effective electron mass. The latter determines the strength of the local electron-screening effect and can change the deuteron-deuteron reaction rates at very low energies by many orders of magnitude.
View Article and Find Full Text PDFBreast carcinomas (BC) are among the most frequent cancers in women. Studies on radiosensitivity and ionizing radiation response of BC cells are scarce and mainly focused on intrinsic molecular mechanisms but do not include clinically relevant features as chromosomal rearrangements important for radiotherapy. The main purpose of this study was to compare the ionizing radiation response and efficiency of repair mechanisms of human breast carcinoma cells (Cal 51) and peripheral blood lymphocytes (PBL) for different doses and radiation qualities (Co γ-rays, 150 MeV and spread-out Bragg peak (SOBP) proton beams).
View Article and Find Full Text PDFThis study is based on our already published experimental data (Kowalska et al. in Radiat Environ Biophys 58:99-108, 2019) and is devoted to modeling of chromosome aberrations in human lymphocytes induced by 22.1 MeV/u B ions, 199 MeV/u C ions, 150 MeV and spread-out Bragg peak (SOBP) proton beams as well as by Co γ rays.
View Article and Find Full Text PDFWe investigated induction of chromosome aberrations (CA) in human lymphocytes when exposed to 150 MeV and spread out Bragg peak (SOBP) proton beams, and 199 MeV/u carbon beam which are currently widely used for cancer treatment and simultaneously are important components of cosmic radiation. For a comparison, the boron ions of much lower energy 22 MeV/u and a Co γ rays were used. Dose-effect curves as well as the distributions of CA were studied using Poisson and Neyman type A statistics.
View Article and Find Full Text PDF