Solution-deposited nanoscale films of RuO ("nanoskins") are effective transparent conductors once calcined to 200 °C. Upon heating the nanoskins to higher temperature the nanoskins show increased transmission at 550 nm. Electronic microscopy and X-ray diffraction show that the changes in the optical spectrum are accompanied by the formation of rutile RuO nanoparticles.
View Article and Find Full Text PDFLuminescent gold nanocrystals (AuNCs) are a recently-developed material with potential optic, electronic and biological applications. They also demonstrate energy transfer (ET) acceptor/sensitization properties which have been ascribed to Förster resonance energy transfer (FRET) and, to a lesser extent, nanosurface energy transfer (NSET). Here, we investigate AuNC acceptor interactions with three structurally/functionally-distinct donor classes including organic dyes, metal chelates and semiconductor quantum dots (QDs).
View Article and Find Full Text PDFTo understand the importance of the band gap to the magnetic ordering in magnetic semiconductors, we have studied the effect of particle size on the ferromagnetic Curie temperature in semiconducting EuS. We have synthesized capped approximately 20 nm EuS nanoparticles using a single-source precursor, [Eu(S(2)CN(i)()Bu(2))(3)Phen] decomposed in trioctylphosphine. The nanoparticles have been characterized by X-ray powder diffraction, TEM, and magnetic susceptibility measurements as a function of temperature and field.
View Article and Find Full Text PDF