Hyperactivity mediated by synaptotoxic β-amyloid (Aβ) oligomers is one of the earliest forms of neuronal dysfunction in Alzheimer's disease. In the search for a preventive treatment strategy, we tested the effect of scavenging Aβ peptides before Aβ plaque formation. Using in vivo two-photon calcium imaging and SF-iGluSnFR-based glutamate imaging in hippocampal slices, we demonstrate that an Aβ binding anticalin protein (Aβ-anticalin) can suppress early neuronal hyperactivity and synaptic glutamate accumulation in the APP23xPS45 mouse model of β-amyloidosis.
View Article and Find Full Text PDFThe fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics.
View Article and Find Full Text PDFThe hippocampal CA2 region plays a key role in social memory. The encoding of such memory involves afferent activity from the hypothalamic supramammillary nucleus (SuM) to CA2. However, the neuronal circuits required for consolidation of freshly encoded social memory remain unknown.
View Article and Find Full Text PDFSemin Cell Dev Biol
April 2023
Glutamatergic neurotransmission is a widespread form of synaptic excitation in the mammalian brain. The development of genetically encoded fluorescent glutamate sensors allows monitoring synaptic signaling in living brain tissue in real time. Here, we describe single- and two-photon imaging of synaptically evoked glutamatergic population signals in acute hippocampal slices expressing the fluorescent glutamate sensor SF-iGluSnFR.
View Article and Find Full Text PDFMemory persistence is a fundamental cognitive process for guiding behaviors and is considered to rely mostly on neuronal and synaptic plasticity. Whether and how astrocytes contribute to memory persistence is largely unknown. Here, by using two-photon Ca imaging in head-fixed mice and fiber photometry in freely moving mice, we show that aversive sensory stimulation activates α7-nicotinic acetylcholine receptors (nAChRs) in a subpopulation of astrocytes in the auditory cortex.
View Article and Find Full Text PDFComput Struct Biotechnol J
April 2021
Gene manipulation is a useful approach for understanding functions of genes and is important for investigating basic mechanisms of brain function on the level of single neurons and circuits. Despite the development and the wide range of applications of CRISPR-Cas9 and base editors (BEs), their implementation for an analysis of individual neurons remained limited. In fact, conventional gene manipulations are generally achieved only on the population level.
View Article and Find Full Text PDFOrai1 channels were reported as critical contributors to the Ca signal in hippocampal neurons underlying synaptic plasticity associated with learning and memory. We discuss the results in view of conflicting other reports that stressed the roles of Orai2 channels but failed to detect functions of Orai1 channels in these neurons.
View Article and Find Full Text PDFTwo-photon laser scanning microscopy has been extensively applied to study in vivo neuronal activity at cellular and subcellular resolutions in mammalian brains. However, the extent of such studies is typically confined to a single functional region of the brain. Here, we demonstrate a novel technique, termed the multiarea two-photon real-time in vivo explorer (MATRIEX), that allows the user to target multiple functional brain regions distributed within a zone of up to 12 mm in diameter, each with a field of view (FOV) of ~200 μm in diameter, thus performing two-photon Ca imaging with single-cell resolution in all of the regions simultaneously.
View Article and Find Full Text PDFMitochondria vary in morphology and function in different tissues; however, little is known about their molecular diversity among cell types. Here we engineered MitoTag mice, which express a Cre recombinase-dependent green fluorescent protein targeted to the outer mitochondrial membrane, and developed an isolation approach to profile tagged mitochondria from defined cell types. We determined the mitochondrial proteome of the three major cerebellar cell types (Purkinje cells, granule cells and astrocytes) and identified hundreds of mitochondrial proteins that are differentially regulated.
View Article and Find Full Text PDFβ-amyloid (Aβ)-dependent neuronal hyperactivity is believed to contribute to the circuit dysfunction that characterizes the early stages of Alzheimer's disease (AD). Although experimental evidence in support of this hypothesis continues to accrue, the underlying pathological mechanisms are not well understood. In this experiment, we used mouse models of Aβ-amyloidosis to show that hyperactivation is initiated by the suppression of glutamate reuptake.
View Article and Find Full Text PDFIt is widely assumed that inositol trisphosphate (IP) and ryanodine (Ry) receptors share the same Ca pool in central mammalian neurons. We now demonstrate that in hippocampal CA1 pyramidal neurons IP- and Ry-receptors are associated with two functionally distinct intracellular Ca stores, respectively. While the IP-sensitive Ca store refilling requires Orai2 channels, Ry-sensitive Ca store refilling involves voltage-gated Ca channels (VGCCs).
View Article and Find Full Text PDFCalcium imaging with genetically encoded calcium indicators (GECIs) is routinely used to measure neural activity in intact nervous systems. GECIs are frequently used in one of two different modes: to track activity in large populations of neuronal cell bodies, or to follow dynamics in subcellular compartments such as axons, dendrites and individual synaptic compartments. Despite major advances, calcium imaging is still limited by the biophysical properties of existing GECIs, including affinity, signal-to-noise ratio, rise and decay kinetics and dynamic range.
View Article and Find Full Text PDFHyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually gated channels that are operated by voltage and by neurotransmitters via the cAMP system. cAMP-dependent HCN regulation has been proposed to play a key role in regulating circuit behavior in the thalamus. By analyzing a knockin mouse model (HCN2EA), in which binding of cAMP to HCN2 was abolished by 2 amino acid exchanges (R591E, T592A), we found that cAMP gating of HCN2 is essential for regulating the transition between the burst and tonic modes of firing in thalamic dorsal-lateral geniculate (dLGN) and ventrobasal (VB) nuclei.
View Article and Find Full Text PDFThe cerebral cortex is organized in vertical columns that contain neurons with similar functions. The cellular micro-architecture of such columns is an essential determinant of brain dynamics and cortical information processing. However, a detailed understanding of columns is incomplete, even in the best studied cortical regions, and mostly restricted to the upper cortical layers.
View Article and Find Full Text PDFTwo-photon calcium imaging became in recent years a very popular method for the functional analysis of neural cell populations on a single-cell level in anesthetized or awake behaving animals. Scientific insights about single-cell processing of sensory information but also analyses of higher cognitive functions in healthy or diseased states became thereby feasible. However, two-photon imaging is generally limited to depths of a few hundred micrometers when recording from densely labeled cell populations.
View Article and Find Full Text PDFA major mystery of many types of neurological and psychiatric disorders, such as Alzheimer's disease (AD), remains the underlying, disease-specific neuronal damage. Because of the strong interconnectivity of neurons in the brain, neuronal dysfunction necessarily disrupts neuronal circuits. In this article, we review evidence for the disruption of large-scale networks from imaging studies of humans and relate it to studies of cellular dysfunction in mouse models of AD.
View Article and Find Full Text PDFThe ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
Amyloid-β (Aβ) is thought to play an essential pathogenic role in Alzheimer´s disease (AD). A key enzyme involved in the generation of Aβ is the β-secretase BACE, for which powerful inhibitors have been developed and are currently in use in human clinical trials. However, although BACE inhibition can reduce cerebral Aβ levels, whether it also can ameliorate neural circuit and memory impairments remains unclear.
View Article and Find Full Text PDFAdiponectin is one of the most abundant adipokines secreted from adipose tissue. It acts as an endogenous insulin sensitizer and plasma concentrations are inversely correlated with obesity and metabolic syndrome. A decrease in plasma adiponectin levels normally indicates increased hormonal activity of the visceral lipid tissue, which is associated with decreased insulin sensitivity.
View Article and Find Full Text PDFTwo-photon laser scanning calcium imaging has emerged as a useful method for the exploration of neural function and structure at the cellular and subcellular level in vivo. The applications range from imaging of subcellular compartments such as dendrites, spines and axonal boutons up to the functional analysis of large neuronal or glial populations. However, the depth penetration is often limited to a few hundred micrometers, corresponding, for example, to the upper cortical layers of the mouse brain.
View Article and Find Full Text PDFIn vivo two-photon Ca imaging has become an effective approach for the functional analysis of neuronal populations, individual neurons and subcellular neuronal compartments in the intact brain. When imaging individually labelled neurons, depth penetration can often reach up to 1 mm below the cortical surface. However, for densely labelled neuronal populations, imaging with single-cell resolution is largely restricted to the upper cortical layers in the mouse brain.
View Article and Find Full Text PDFPhytoplasmas are plant-pathogenic, phloem-colonizing, cell wall-less microorganisms that are primarily dependent on insect transmission for their spread and survival. The life cycle of phytoplasmas involves replication in insects and host plants. Until recently, phytoplasmas have resisted all attempts at cultivation in cell-free media, making these pathogens poorly characterized on a physiological and biochemical basis.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
August 2016
An essential feature of Alzheimer's disease (AD) is the accumulation of amyloid-β (Aβ) peptides in the brain, many years to decades before the onset of overt cognitive symptoms. We suggest that during this very extended early phase of the disease, soluble Aβ oligomers and amyloid plaques alter the function of local neuronal circuits and large-scale networks by disrupting the balance of synaptic excitation and inhibition (E/I balance) in the brain. The analysis of mouse models of AD revealed that an Aβ-induced change of the E/I balance caused hyperactivity in cortical and hippocampal neurons, a breakdown of slow-wave oscillations, as well as network hypersynchrony.
View Article and Find Full Text PDF