Publications by authors named "Konki J"

Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character.

View Article and Find Full Text PDF

Nihonium (Nh, element 113) and flerovium (Fl, element 114) are the first superheavy elements in which the shell is occupied. High volatility and inertness were predicted for Fl due to the strong relativistic stabilization of the closed sub-shell, which originates from a large spin-orbit splitting between the and orbitals. One unpaired electron in the outermost sub-shell in Nh is expected to give rise to a higher chemical reactivity.

View Article and Find Full Text PDF

The β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

The nuclei below lead but with more than 126 neutrons are crucial to an understanding of the astrophysical r process in producing nuclei heavier than A∼190. Despite their importance, the structure and properties of these nuclei remain experimentally untested as they are difficult to produce in nuclear reactions with stable beams. In a first exploration of the shell structure of this region, neutron excitations in ^{207}Hg have been probed using the neutron-adding (d,p) reaction in inverse kinematics.

View Article and Find Full Text PDF

There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN.

View Article and Find Full Text PDF
Article Synopsis
  • Atomic nuclei can take on a pear shape through octupole distortion, which is significant for studying electric-dipole moments and potential CP violation—an area of interest for physics beyond the Standard Model.
  • Researchers identified radon and radium isotopes as key candidates for these measurements.
  • Observations of radon isotopes revealed that while they exhibit octupole vibrations, they do not have a static pear shape in their ground states, making them less suitable for enhancing measurable atomic electric-dipole moments.
View Article and Find Full Text PDF
Article Synopsis
  • The ^{12}C(α,γ)^{16}O reaction is crucial in astrophysics, but its cross section is not well-defined in laboratory settings for key astrophysical energies.
  • The reduced alpha width, γ_{11}, of the 1^{-} level in ^{16}O is essential for accurately measuring this cross section, traditionally determined through specific nuclear reactions or decay processes.
  • New findings present improved branching ratios for β-decay processes, showing a significant increase in γ_{11}, which aligns with previous α-transfer studies and enhances the understanding of the ^{12}C(α,γ) reaction in hydrostatic helium burning.
View Article and Find Full Text PDF

Excited states of the neutron-rich nuclei (97,99)Rb were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of (97)Rb as being built on the πg(9/2) [431] 3/2(+) Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N=60 and rotational bands above.

View Article and Find Full Text PDF

Two isomers decaying by electromagnetic transitions with half-lives of 4.7(1.1) and 247(73) μs have been discovered in the heavy ^{254}Rf nucleus.

View Article and Find Full Text PDF

There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are 'octupole deformed', that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei.

View Article and Find Full Text PDF

The neutron-rich nuclei 94,96Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2(+) states and their absolute E2 transition strengths to the ground state are determined and discussed in the context of the E(2(1)(+)) and B(E2;2(1)(+)→0(1)(+)) systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed.

View Article and Find Full Text PDF

Aerosol samples have been studied under different background conditions using gamma-ray coincidence and low-background gamma-ray singles spectrometric techniques with High-Purity Germanium detectors. Conventional low-background gamma-ray singles counting is a competitive technique when compared to the gamma-gamma coincidence approach in elevated background conditions. However, measurement of gamma-gamma coincidences can clearly make the identification of different nuclides more reliable and efficient than using singles spectrometry alone.

View Article and Find Full Text PDF