Perturbation of mRNA splicing is commonly observed in human cancers and plays a role in various aspects of cancer hallmarks. Understanding the mechanisms and functions of alternative splicing (AS) not only enables us to explore the complex regulatory network involved in tumour initiation and progression but also reveals potential for RNA-based cancer treatment strategies. This review provides a comprehensive summary of the significance of AS in liver cancer, covering the regulatory mechanisms, cancer-related AS events, abnormal splicing regulators, as well as the interplay between AS and post-transcriptional and post-translational regulations.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD), a nucleotide-containing metabolite, can be incorporated into the RNA 5'-terminus to result in NAD-capped RNA (NAD-RNA). Since NAD has been heightened as one of the most essential metabolites in cells, its linkage to RNA represents a critical but poorly studied modification at the epitranscriptomic level. Here, we design a highly sensitive method, DO-seq, to capture NAD-RNAs.
View Article and Find Full Text PDFNicotinamide adenine dinucleotide (NAD) can be used as an initiating nucleotide in RNA transcription to produce NAD-capped RNA (NAD-RNA). RNA modification by NAD that links metabolite with expressed transcript is a poorly studied epitranscriptomic modification. Current NAD-RNA profiling methods involve multi-steps of chemo-enzymatic labeling and affinity-based enrichment, thus presenting a critical analytical challenge to remove unwanted variations, particularly batch effects.
View Article and Find Full Text PDFNucleic Acids Res
January 2023
The hub metabolite, nicotinamide adenine dinucleotide (NAD), can be used as an initiating nucleotide in RNA synthesis to result in NAD-capped RNAs (NAD-RNA). Since NAD has been heightened as one of the most essential modulators in aging and various age-related diseases, its attachment to RNA might indicate a yet-to-be discovered mechanism that impacts adult life-course. However, the unknown identity of NAD-linked RNAs in adult and aging tissues has hindered functional studies.
View Article and Find Full Text PDFLysine acetylation is a reversible and dynamic post-translational modification that plays vital roles in regulating multiple cellular processes including aging. However, acetylome-wide analysis in the aging process remains poorly studied in mammalian tissues. Nicotinamide adenine dinucleotide (NAD), a hub metabolite, benefits health span at least in part due to the activation of Sirtuins, a family of NAD-consuming deacetylases, indicating changes in acetylome.
View Article and Find Full Text PDFInflammaging refers to low-grade, chronically activated innate immunity that has deleterious effects on healthy lifespan. However, little is known about the intrinsic signaling pathway that elicits innate immune genes during aging. Here, using Drosophila melanogaster, we profile the microRNA targetomes in young and aged animals, and reveal Dawdle, an activin-like ligand of the TGF-β pathway, as a physiological target of microRNA-252.
View Article and Find Full Text PDFBackground And Aims: HSCs and portal fibroblasts (PFs) are the major sources of collagen-producing myofibroblasts during liver fibrosis, depending on different etiologies. However, the mechanisms by which their dynamic gene expression directs the transition from the quiescent to the activated state-as well as their contributions to fibrotic myofibroblasts-remain unclear. Here, we analyze the activation of HSCs and PFs in CCL -induced and bile duct ligation-induced fibrosis mouse models, using single-cell RNA sequencing and lineage tracing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2021
Microglial-derived inflammation has been linked to a broad range of neurodegenerative and neuropsychiatric conditions, including amyotrophic lateral sclerosis (ALS). Using single-cell RNA sequencing, a class of Disease-Associated Microglia (DAMs) have been characterized in neurodegeneration. However, the DAM phenotype alone is insufficient to explain the functional complexity of microglia, particularly with regard to regulating inflammation that is a hallmark of many neurodegenerative diseases.
View Article and Find Full Text PDFTransforming growth factor β-activated kinase1 (TAK1) encoded by the gene MAP3K7 regulates multiple important downstream effectors involved in immune response, cell death, and carcinogenesis. Hepatocyte-specific deletion of TAK1 in mice promotes liver fibrosis and hepatocellular carcinoma (HCC) formation. Here, we report that genetic inactivation of RIPK1 kinase using a kinase dead knockin D138N mutation in mice inhibits the expression of liver tumor biomarkers, liver fibrosis, and HCC formation.
View Article and Find Full Text PDFThe long-lived proteome constitutes a pool of exceptionally stable proteins with limited turnover. Previous studies on ubiquitin-mediated protein degradation primarily focused on relatively short-lived proteins; how ubiquitylation modifies the long-lived proteome and its regulatory effect on adult lifespan is unclear. Here we profile the age-dependent dynamics of long-lived proteomes in Drosophila by mass spectrometry using stable isotope switching coupled with antibody-enriched ubiquitylome analysis.
View Article and Find Full Text PDFChromatin immunoprecipitation followed by sequencing (ChIP-seq) is a routine procedure in the lab; however, epigenome-wide quantitative comparison among independent ChIP-seq experiments remains a challenge. Here, we contribute an experimental protocol combined with a computational workflow allowing quantitative and comparative assessment of epigenome using animal tissues.
View Article and Find Full Text PDFEpigenetic alteration has been implicated in aging. However, the mechanism by which epigenetic change impacts aging remains to be understood. H3K27me3, a highly conserved histone modification signifying transcriptional repression, is marked and maintained by Polycomb Repressive Complexes (PRCs).
View Article and Find Full Text PDFIn eukaryotes, aberrant expression of transposable elements (TEs) is detrimental to the host genome. Piwi-interacting RNAs (piRNAs) of ∼23 to 30 nucleotides bound to PIWI clade Argonaute proteins silence transposons in a manner that is strictly dependent on their sequence complementarity. Hence, a key goal in understanding piRNA pathways is to determine mechanisms that modulate piRNA sequences.
View Article and Find Full Text PDFLiquid chromatography-photodiode array detector-mass spectrometry-based chemical investigation of the leaves and stems of Premna fulva yielded one new iridoid glycoside (1), one new triterpenoid glycoside (2) along with six known compounds isolated for the first time from the genus. Their structures were established on the basis of extensive spectroscopic data analyses and chemical methods.
View Article and Find Full Text PDF