Graves' ophthalmopathy (GO) is an extrathyroidal manifestation of Graves' disease, Orbital fibroblasts (OFs) are recognized as key players in GO pathogenesis, involved in orbital inflammation, tissue remodeling, and fibrosis. This study offers a primary exploration of cell behavior and characteristics on OFs from GO (GO-OFs), and compared to OFs from healthy control (HC-OFs). Results reveal that GO-OFs exhibit delayed migration from tissue fragments, while no significant difference in cell proliferation is observed between GO-OFs and HC-OFs.
View Article and Find Full Text PDFAims: Retinal ischemia/reperfusion (I/R) injury is implicated in the etiology of various ocular disorders. Prior research has demonstrated that bone marrow tyrosine kinase on chromosome X (BMX) contributes to the advancement of ischemic disease and inflammatory reactions. Consequently, the current investigation aims to evaluate BMX's impact on retinal I/R injury and clarify its implied mechanism of action.
View Article and Find Full Text PDFLoss of retinal ganglion cells (RGCs) is a primary cause of visual impairment in glaucoma, the pathological process is closely related to neuroinflammation and apoptosis. B-cell activating factor (BAFF) is a fundamental survival factor mainly expressed in the B cell lineage. Evidence suggests its neuroprotective effect, but the expression and role in the retina have not yet been investigated.
View Article and Find Full Text PDFObjective: The aim of the study was to evaluate the effect of the RhoA/ROCK inhibitor Fasudil on retinal neovascularization (NV) in vivo and angiogenesis in vitro.
Methods: C57BL/6 was used to establish an OIR model. First, RhoA/ROCK expression was first examined and compared between OIR and healthy controls.
Reactive oxygen species (ROS) overproduction plays an essential role in the etiology of ischemic/hypoxic retinopathy caused by acute glaucoma. NADPH oxidase (NOX) 4 was discovered as one of the main sources of ROS in glaucoma. However, the role and potential mechanisms of NOX4 in acute glaucoma have not been fully elucidated.
View Article and Find Full Text PDFTh17 and regulatory T cells (Tregs) play crucial roles in the pathogenesis of autoimmune diseases. Th17/Treg homeostasis is critically involved in maintaining the immune balance. Disturbed Th17/Treg homeostasis contributes to the progression of autoimmune diseases.
View Article and Find Full Text PDF