Dietary fat can alter host metabolism and gut microbial composition. Crocodile oil (CO) was extracted from the fatty tissues of Crocodylus siamensis. CO, rich in monounsaturated- and polyunsaturated fatty acids, has been reported to reduce inflammation, counter toxification, and improve energy metabolism.
View Article and Find Full Text PDFThe liver is a key organ governing body energy metabolism. Dietary fats influence energy metabolism and mitochondrial functioning. Crocodile oil (CO) is rich in mono- and polyunsaturated fatty acids that contain natural anti-inflammatory and healing properties.
View Article and Find Full Text PDFCrocodile oil (CO) is rich in monounsaturated fatty acids and polyunsaturated fatty acids. The antioxidant activity and cognitive effect of monounsaturated fatty acids and polyunsaturated fatty acids have been largely reported. This work aimed to investigate the effect of CO on antioxidant activity and cognitive function in rats.
View Article and Find Full Text PDFBackground: Dietary fat composition is a potential major factor affecting energy metabolism. Crocodile oil (CO) is rich in mono- and poly-unsaturated fatty acids exhibiting anti-inflammatory and healing properties.
Aim: This study investigated different levels of CO consumption on alterations and expression of proteins involved in energy metabolism in rats.
Crocodile oil is a highly effective treatment for ailments ranging from skin conditions to cancer. However, the effects of the oil on liver detoxification pathways are not well studied. This study aimed to investigate the effects of crocodile oil on the detoxification enzyme activities and the mRNA expressions of cytochrome P450 1A2 (CYP1A2), cytochrome P450 2E1 (CYP2E1), and glutathione S-transferase (GST) in rats.
View Article and Find Full Text PDFBackground And Aim: Consumption of fatty acids (FA) can alter hepatic energy metabolism and mitochondrial function in the liver. Crocodile oil (CO) is rich in mono-and polyunsaturated FAs, which have natural anti-inflammatory and healing properties. In rat livers, we investigated the effect of CO on mitochondrial function for energy homeostasis.
View Article and Find Full Text PDFType 1 Diabetes mellitus (T1DM) is associated with abnormal liver function, but the exact mechanism is unclear. Cordycepin improves hepatic metabolic pathways leading to recovery from liver damage. We investigated the effects of cordycepin in streptozotocin-induced T1DM mice via the expression of liver proteins.
View Article and Find Full Text PDFDiabetes mellitus (DM) is characterized by metabolic disorders and psychological deficits, including cognitive decline. Here, we investigated the effect of cordycepin on oxidative stress and protein expression in the brains of diabetic mice. Twenty-four mice were divided into four groups, one comprising untreated healthy mice (N); one comprising healthy mice treated with cordycepin (24 mg/kg body weight) (N+Cor); one comprising untreated DM mice; and one comprising DM mice treated with cordycepin (24 mg/kg body weight) (DM+Cor).
View Article and Find Full Text PDFBackground And Aim: (CM) is a fungus that has been used to enhance aphrodisiac activity in men, but to date, no studies have focused on its antidiabetic properties. This study aimed to investigate the effects of CM on reproductive performance of streptozotocin (STZ)-induced diabetic male rats.
Materials And Methods: Six-week-old Wistar rats were randomly divided into four groups: control Group 1 consisting of healthy rats; Group 2, healthy rats treated with CM (100 mg/kg); Group 3, diabetic untreated rats; and Group 4, diabetic rats treated with CM (100 mg/kg).