Since the discovery of fatty acid hydroxy fatty acids (FAHFAs), significant progress has been made in understanding their regulation, biochemistry, and physiological activities. Here, we contribute to this understanding by revealing that inflammation induces the production of fatty acid hydroxy stearic acids and fatty acid hydroxyoctadecadienoic acids in white adipose tissue depots and in adipocytes cocultured with macrophages. In lipopolysaccharide (LPS)-induced coculture systems, we confirm that adipose triglyceride lipase is required for inflammation-induced FAHFA generation and demonstrate that inflammation is necessary for producing hydroxy fatty acids.
View Article and Find Full Text PDFAn abbreviated synthesis of the cell permeable fluorophosphonate-alkyne probe (FP-alkyne) for the broad assessment of serine hydrolase activity has been developed. While FP-alkyne has proven pivotal in numerous chemical biology studies access has relied on a lengthy preparation over nine steps. We have developed a four-step synthesis, starting from commercially available compounds, with three purification steps to provide a new expedited route allowing easy access to a useful tool compound for exploring serine hydrolases chemistry and biology.
View Article and Find Full Text PDFWe identified twenty-two new sacubitril derivatives (5a-v) as lead compounds for various biologically active targets. These compounds were synthesized by reacting an intermediate compound (2,4)-5-([1,1'-biphenyl]-4-yl)-4-(amino)-2-methylpentanoic acid ethyl ester hydrochloride with respective carboxylic acid (RCOOH). The molecular structures of all the newly synthesized compounds were determined by H and C NMR, ESI mass spectrometry, FTIR spectroscopy, and CHN analysis.
View Article and Find Full Text PDFLipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited.
View Article and Find Full Text PDFBranched fatty acid (FA) esters of hydroxy FAs (HFAs; FAHFAs) are recently discovered lipids that are conserved from yeast to mammals. A subfamily, palmitic acid esters of hydroxy stearic acids (PAHSAs), are anti-inflammatory and anti-diabetic. Humans and mice with insulin resistance have lower PAHSA levels in subcutaneous adipose tissue and serum.
View Article and Find Full Text PDFThe repressor element-1 silencing transcription factor (REST) represses neuronal gene expression, whose dysregulation is implicated in brain tumors and neurological diseases. A high level of REST protein drives the tumor growth in some glioblastoma cells. While transcription factors like REST are challenging targets for small-molecule inhibitors, the inactivation of a regulatory protein, small CTD phosphatase 1 (SCP1), promotes REST degradation and reduces transcriptional activity.
View Article and Find Full Text PDFA series of 30 novel diamino phenyl chloropicolinate fettered carboxamides, urea, and thiourea derivatives were synthesized by coupling of methyl 4-amino-6-(2-aminophenyl)-3-chloropyridine-2-carboxylate with different acid chlorides, urea, and thiourea moieties, respectively. All of these compounds were characterized by H and C nuclear magnetic resonance spectroscopy, CHN analysis, and high-resolution mass spectra for confirmation of the structures. Two compounds were also characterized by single-crystal X-ray diffraction analysis to confirm the structures obtained by spectral analysis.
View Article and Find Full Text PDFA series of novel purine linked piperazine derivatives were synthesized to identify new, potent inhibitors of Mycobacterium tuberculosis. The compounds were designed to target MurB disrupting the biosynthesis of the peptidoglycan and exert antiproliferative effects. The first series of purine-2,6-dione linked piperazine derivatives were synthesized using an advanced intermediate 1-(3,4-difluorobenzyl)-7-(but-2-ynyl)-3-methyl-8-(piperazin-1-yl)-1H-purine-2,6(3H,7H)-dione hydrochloride (6) which was coupled with varied carboxylic acid chloride derivatives.
View Article and Find Full Text PDFThe syntheses of linoleic acid esters of hydroxy linoleic acids (LAHLAs) present in oat oil and human serum have been achieved, providing access to material for testing and the determination of the stereochemistry of the natural compounds. While 9- and 13-LAHLAs were found to be a mixture of enantiomers 15-LAHLA is generated in a single optical form in oat oil. The stereochemistry of 15-LAHLA in oat oil was found to be opposite to that reported for digalactosyldiacylglycerol that possesses an embedded 15-LAHLA.
View Article and Find Full Text PDFFatty acid esters of hydroxy fatty acids (FAHFAs) are a recently discovered class of biologically active lipids. Here we identify the linoleic acid ester of 13-hydroxy linoleic acid (13-LAHLA) as an anti-inflammatory lipid. An oat oil fraction and FAHFA-enriched extract from this fraction showed anti-inflammatory activity in a lipopolysaccharide-induced cytokine secretion assay.
View Article and Find Full Text PDFFAHFAs are a class of bioactive lipids, which show great promise for treating diabetes and inflammatory diseases. Deciphering the metabolic pathways that regulate endogenous FAHFA levels is critical for developing diagnostic and therapeutic strategies. However, it remains unclear how FAHFAs are metabolized in cells or tissues.
View Article and Find Full Text PDFFatty acid esters of hydroxy fatty acids (FAHFAs) are a growing class of natural products found in organisms ranging from plants to humans. The roles these endogenous derivatives of fatty acids play in biology and their novel pathways for controlling inflammation have increased our understanding of basic human physiology. FAHFAs incorporate diverse fatty acids into their structures, however, given their recent discovery non-natural derivatives have not been a focus and as a result structure-activity relationships remain unknown.
View Article and Find Full Text PDFA series of twenty eight molecules of ethyl 5-(piperazin-1-yl)benzofuran-2-carboxylate and 3-(piperazin-1-yl)benzo[d]isothiazole were designed by molecular hybridization of thiazole aminopiperidine core and carbamide side chain in eight steps and were screened for their in vitro Mycobacterium smegmatis (MS) GyrB ATPase assay, Mycobacterium tuberculosis (MTB) DNA gyrase super coiling assay, antitubercular activity, cytotoxicity and protein-inhibitor interaction assay through differential scanning fluorimetry. Also the orientation and the ligand-protein interactions of the top hit molecules with MS DNA gyrase B subunit active site were investigated applying extra precision mode (XP) of Glide. Among the compounds studied, 4-(benzo[d]isothiazol-3-yl)-N-(4-chlorophenyl)piperazine-1-carboxamide (26) was found to be the most promising inhibitor with an MS GyrB IC50 of 1.
View Article and Find Full Text PDFDNA gyrase of Mycobacterium tuberculosis (MTB) is a type II topoisomerase and is a well-established and validated target for the development of novel therapeutics. By adapting the medium throughput screening approach, we present the discovery and optimization of ethyl 5-(piperazin-1-yl) benzofuran-2-carboxylate series of mycobacterial DNA gyraseB inhibitors, selected from Birla Institute of Technology and Science (BITS) database chemical library of about 3000 molecules. These compounds were tested for their biological activity; the compound 22 emerged as the most active potent lead with an IC50 of 3.
View Article and Find Full Text PDF