Publications by authors named "Kondrashkina E"

Influenza pandemic occurs when a new strain from other animal species overcomes the inter-species barriers and supports rapid human-to-human transmission. A critical prerequisite to this process is that hemagglutinin (HA) acquires a few key mutations to switch from avian receptors to human receptors. Previous studies suggest that H1 and H2/H3 HAs use different sets of mutations for the switch.

View Article and Find Full Text PDF

Leiomodin (Lmod) is a class of potent tandem-G-actin-binding nucleators in muscle cells. Lmod mutations, deletion, or instability are linked to lethal nemaline myopathy. However, the lack of high-resolution structures of Lmod nucleators in action severely hampered our understanding of their essential cellular functions.

View Article and Find Full Text PDF

In June 2013, the first human infection by avian influenza A(H6N1) virus was reported in Taiwan. This incident raised the concern for possible human epidemics and pandemics from H6 viruses. In this study, we performed structural and functional investigation on the hemagglutinin (HA) proteins of the human-infecting A/Taiwan/2/2013(H6N1) (TW H6) virus and an avian A/chicken/Guangdong/S1311/2010(H6N6) (GD H6) virus that transmitted efficiently in guinea pigs.

View Article and Find Full Text PDF

It is generally held that random-coil polypeptide chains undergo a barrier-less continuous collapse when the solvent conditions are changed to favor the fully folded native conformation. We test this hypothesis by probing intramolecular distance distributions during folding in one of the paradigms of folding reactions, that of cytochrome c. The Trp59-to-heme distance was probed by time-resolved Förster resonance energy transfer in the microsecond time range of refolding.

View Article and Find Full Text PDF

Diverged ~4000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1-H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H1-15 HA and has the potential to enhance receptor binding.

View Article and Find Full Text PDF

Macromolecular-crystallography (MX) beamlines routinely provide a possibility to change X-ray beam energy, focus the beam to a size of tens of microns, align a sample on a microdiffractometer using on-axis video microscope, and collect data with an area-detector positioned in three dimensions. These capabilities allow for running complementary measurements of small-angle X-ray scattering and diffraction (SAXS) at the same beamline with such additions to the standard MX setup as a vacuum path between the sample and the detector, a modified beam stop, and a custom sample cell. On the 21-ID-D MX beamline at the Advanced Photon Source we attach a vacuum flight tube to the area detector support and use the support motion for aligning a beam stop built into the rear end of the flight tube.

View Article and Find Full Text PDF

Influenza A and B viruses are responsible for the severe morbidity and mortality worldwide in annual influenza epidemics. Currently circulating influenza B virus belongs to the B/Victoria or B/Yamagata lineage that was diverged from each other about 30-40 years ago. However, a mechanistic understanding of their divergent evolution is still lacking.

View Article and Find Full Text PDF

Lipidic mesophases are a class of highly ordered soft materials that form when certain lipids are mixed with water. Understanding the relationship between the composition and the microstructure of mesophases is necessary for fundamental studies of self-assembly in amphiphilic systems and for applications, such as the crystallization of membrane proteins. However, the laborious formulation protocol for highly viscous mesophases and the large amounts of material required for sample formulation are significant obstacles in such studies.

View Article and Find Full Text PDF

Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood.

View Article and Find Full Text PDF

The earliest kinetic folding events for (betaalpha)(8) barrels reflect the appearance of off-pathway intermediates. Continuous-flow microchannel mixing methods interfaced to small-angle x-ray scattering (SAXS), circular dichroism (CD), time-resolved Förster resonant energy transfer (trFRET), and time-resolved fluorescence anisotropy (trFLAN) have been used to directly monitor global and specific dimensional properties of the partially folded state in the microsecond time range for a representative (betaalpha)(8) barrel protein. Within 150 micros, the alpha-subunit of Trp synthase (alphaTS) experiences a global collapse and the partial formation of secondary structure.

View Article and Find Full Text PDF

We describe a method by which a single experiment can reveal both association model (pathway and constants) and low-resolution structures of a self-associating system. Small-angle scattering data are collected from solutions at a range of concentrations. These scattering data curves are mass-weighted linear combinations of the scattering from each oligomer.

View Article and Find Full Text PDF

Transcription initiation by the sigma54 form of bacterial RNA polymerase requires hydrolysis of ATP by an enhancer binding protein (EBP). We present SAS-based solution structures of the ATPase domain of the EBP NtrC1 from Aquifex aeolicus in different nucleotide states. Structures of apo protein and that bound to AMPPNP or ADP-BeF(x) (ground-state mimics), ADP-AlF(x) (a transition-state mimic), or ADP (product) show substantial changes in the position of the GAFTGA loops that contact polymerase, particularly upon conversion from the apo state to the ADP-BeF(x) state, and from the ADP-AlF(x) state to the ADP state.

View Article and Find Full Text PDF

Using small-angle X-ray scattering combined with a continuous-flow mixing device, we monitored the microsecond compaction dynamics in the folding of Escherichia coli dihydrofolate reductase, an alpha/beta-type protein. A significant collapse of the radius of gyration from 30 A to 23.2 A occurs within 300 micros after the initiation of refolding by a urea dilution jump.

View Article and Find Full Text PDF

The lambda(6-85)(*) pseudo-wild type of lambda repressor fragment is a fast two-state folder (k(f) approximately 35 microsec(-1) at 58 degrees C). Previously, highly stable lambda(6-85)(*) mutants with k(f) > 30 microsec(-1) have been engineered to fold nearly or fully downhill. Stabilization of the native state by solvent tuning might also tune lambda(6-85)(*) away from two-state folding.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the SOD gene are linked to ALS, possibly due to protein aggregation from slightly unstable variants.
  • A metal-free variant of SOD (apo-AS-SOD) was created to study its folding properties, showing a two-state folding mechanism involving an unfolded monomer and a native dimer.
  • The folding process includes a rate-limiting step for monomer folding followed by rapid self-association to form the dimer, with less than 0.5% of the protein existing as a folded monomeric intermediate under typical conditions.
View Article and Find Full Text PDF

The 20 S proteasome is regulated at multiple levels including association with endogenous activators. Two activators have been described for the yeast 20 S proteasome: the 19 S regulatory particle and the Blm10 protein. The sequence of Blm10 is 20% identical to the mammalian PA200 protein.

View Article and Find Full Text PDF

In two-component signal transduction, an input triggers phosphorylation of receiver domains that regulate the status of output modules. One such module is the AAA+ ATPase domain in bacterial enhancer-binding proteins that remodel the sigma(54) form of RNA polymerase. We report X-ray solution scattering and electron microscopy structures of the activated, full-length nitrogen-regulatory protein C (NtrC) showing a novel mechanism for regulation of AAA+ ATPase assembly via the juxtaposition of the receiver domains and ATPase ring.

View Article and Find Full Text PDF

The effects of protein entrapment on the structure and phase behavior of periodically curved lipid mesostructures have been examined by synchrotron small-angle X-ray diffraction and FT-IR spectroscopy. The study was directed towards a better understanding of the effect of confinement in a lipid environment on the stability and unfolding behavior of alpha-chymotrypsin, and, vice versa, the effect of the entrapped protein on the lipid's mesophase structure and temperature- and pressure-dependent phase behavior. We compare the interaction of protein molecules of two different sizes (cytochrome c, 12.

View Article and Find Full Text PDF

Two-component signal transduction is the predominant information processing mechanism in prokaryotes and is also present in single-cell eukaryotes and higher plants. A phosphorylation-based switch is commonly used to activate as many as 40 different types of output domains in more than 6000 two-component response regulators that can be identified in the sequence databases. Previous biochemical and crystallographic studies showed that phosphorylation of the two-component receiver domain of DctD causes a switch between alternative dimeric forms, but it was unclear from the crystal lattice of the activated protein precisely which of four possible dimeric configurations is the biologically relevant one [Park, S.

View Article and Find Full Text PDF

Only a few transcriptional regulatory proteins have been characterized in extremely hyperthermophilic organisms, and most function as repressors. Structural features of the NtrC1 protein from the hyperthermophilic bacterium Aquifex aeolicus suggested that this protein functions similarly to the sigma(54)-polymerase activator DctD of Sinorhizobium meliloti. Here, we demonstrate that NtrC1 is an enzyme that hydrolyzes ATP to activate initiation of transcription by sigma(54)-holoenzyme.

View Article and Find Full Text PDF

We investigated the effect of incorporation of a small aqueous peripheral membrane protein (cyt c) into the three-dimensional periodic nanochannel structures formed by the lipid monoolein (MO) on its rich phase behavior as a function of temperature, pressure, and protein concentration using synchrotron X-ray small-angle diffraction. By simultaneous use of the pressure-jump relaxation technique and time-resolved synchrotron X-ray diffraction, we also studied the kinetics of various lipid mesophase transformations of the system for understanding the mechanistic pathways of their formation influenced by the protein-lipid interactions. Cyt c incorporated into the bicontinuous cubic phase Ia3d of MO has a significant effect on the lipid structure and the pressure stability of the system already at low protein concentrations.

View Article and Find Full Text PDF

The 18ID undulator beamline of the Biophysics Collaborative Access Team at the Advanced Photon Source, Argonne, IL, USA, is a high-performance instrument designed for, and dedicated to, the study of partially ordered and disordered biological materials using the techniques of small-angle X-ray scattering, fiber diffraction, and X-ray absorption spectroscopy. The beamline and associated instrumentation are described in detail and examples of the representative experimental results are presented.

View Article and Find Full Text PDF

Wide-angle X-ray scattering patterns from proteins in solution contain information relevant to the determination of protein fold. At relevant scattering angles, however, these data are weak, and the degree to which they might be used to categorize the fold of a protein is unknown. Preliminary work has been performed at the BioCAT insertion-device beamline at the Advanced Photon Source which demonstrates that one can collect X-ray scattering data from proteins in solution to spacings of at least 2.

View Article and Find Full Text PDF