Publications by authors named "Kondapi A"

Introduction: Several factors influence transmission of 2019-nCoV from mother to fetus during pregnancy, thus the dynamics of vertical transmission is unclear. The role of cellular protective factors, namely a 90 KDa glycoprotein, Early pregnancy-associated protein (Epap-1), expressed by placental endothelial cells in women during early pregnancy would provide an insight into role of placental factors in virus transmission. Since viral spike protein binding to the ACE2 receptors of the host cells promotes virus invasion in placental tissue, an analysis of effects of Epap-1 on the Spike-ACE2 protein binding was studied.

View Article and Find Full Text PDF

Topoisomerase II (TopoII) is a critical component of HIV-1 integration, proviral DNA synthesis, and reverse transcription. During HIV-1 infection, the TopoIIβkinase (TopoIIβK) phosphorylates TopoIIβ. Our earlier research demonstrated that the pyridine scaffold has potent anti-HIV-1 activity by specifically inhibiting TopoIIβK activity.

View Article and Find Full Text PDF

Background: Tumor metastasis is promoted by an immunosuppressive environment. Lactoferrin (Lf) is known to regulate immunological activity in tumor cells and inhibit processes associated with tumor metastasis. A delivery of lactoferrin with docetaxel (DTX) in prostate cancer cells in the form of DTX-loaded lactoferrin nanoparticles (DTX-LfNPs) would provide a dual activity wherein the lactoferrin affects metastasis and DTX chemotherapeutically inhibits mitosis and cell division.

View Article and Find Full Text PDF

Against the backdrop of the second wave of COVID-19 pandemic in India that started in March 2021, we have monitored the spike (S) protein mutations in all the reported (GISAID portal) whole-genome sequences of SARS-CoV-2 circulating in India from 1 January 2021 to 31 August 2021. In the 43,102 SARS-CoV-2 genomic sequences analysed, we have identified 24,260 amino acid mutations in the S protein, based on which 265 Pango lineages could be categorized. The dominant lineage in most of the 28 states of India and its 8 union territories was B.

View Article and Find Full Text PDF

The HIV-1 invasion is initiated with the interaction of viral glycoprotein gp120 and cellular receptor CD4. The binding mechanism reveals two major hotspots involved in gp120-CD4 interaction. The first one is a hydrophobic cavity (Phe43 cavity) on gp120 capped with phenyl ring of phe43 and the second is the electrostatic interaction between positive charge of Arg59 and negative charge of Asp368.

View Article and Find Full Text PDF

Purpose: Cancer stem cells (CSCs) are known to contribute to tumor relapses by virtue of their chemoresistance. With the knowledge that nanoformulations can overcome drug resistance, we evaluated the efficacy and cytotoxicity of clinical-grade carboplatin (CPT)- and etoposide (ETP)-loaded lactoferrin nanoparticles (Lf-Nps) on total, CD133-enriched (non-CSC), and CD133-depleted (CSC) populations of retinoblastoma (Rb) Y79 cells.

Methods: Physicochemical properties of drug-loaded Lf-Nps were measured with transmission electron microscopy and attenuated total reflectance-Fourier transform infrared.

View Article and Find Full Text PDF

The third variable loop region (V3 loop) on gp120 plays an important role in cellular entry of HIV-1. Its interaction with the cellular CD4 and coreceptors is an important hallmark in facilitating the bridging by gp41 and subsequent fusion of membranes for transfer of viral genetic material. Further, the virus phenotype determines the cell tropism via respective co- receptor binding.

View Article and Find Full Text PDF

Topoisomerase II beta (Topo IIβ) is one of the two isoforms of type II topoisomerases present in higher eukaryotes. This 180 kDa nuclear protein involves in different cellular processes like transcription, recombination, etc., apart from its normal topological functions.

View Article and Find Full Text PDF

We report here the development of tenofovir- and curcumin-loaded lactoferrin nanoparticles (TCNPs) as an HIV-microbicide. TCNPs were subjected to various physicochemical characterization experiments, followed by and experiments to assess their efficacy. TCNPs had a diameter of 74.

View Article and Find Full Text PDF

We report clinical profile of hundred and nine patients with SARS CoV-2 infection, and whole genome sequences (WGS) of seven virus isolates from the first reported cases in India, with various international travel histories. Comorbidities such as diabetes, hypertension, and cardiovascular disease were frequently associated with severity of the disease. WBC and neutrophil counts showed an increase, while lymphocyte counts decreased in patients with severe infection suggesting a possible neutrophil mediated organ damage, while immune activity may be diminished with decrease in lymphocytes leading to disease severity.

View Article and Find Full Text PDF

Tau protein aggregation is identified as one of the key phenomena associated with the onset and progression of Alzheimer's disease. In the present study, we performed on-chip confocal imaging of tau protein aggregation and tau-drug interactions using a spiral-shaped passive micromixing platform. Numerical simulations and experiments were performed in order to validate the performance of the micromixer design.

View Article and Find Full Text PDF

Lactoferrin, an iron storage protein, is known for its microbicidal activity and its ability to modulate the immune system, mediated through specific interactions with receptors on cell surfaces for internalization. These activities confer a significant versatility to lactoferrin, presenting it as a targeting ligand to disease-bearing cells. Early efforts in developing targeted delivery systems have focused on nano- and microcomposites comprised of metal and polymeric materials.

View Article and Find Full Text PDF

Intriguing properties and structural dynamics of Lactoferrin have been exploited in numerous applications, including its use as self-assembling, pH sensitive nanoparticles to deliver intended cargo at the disease site. In this study, we explore the possibility of surface modification of Lactoferrin nanoparticles to hone its specificity to target HIV-1 infected cells. Existence of free cysteine groups on Lactoferrin nanoparticles available for reaction with external molecules facilitates conjugation on the surface with Sodium 2-mercaptoethanesulfonate (MES).

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a widespread dementia-related disease affecting mankind worldwide. A cholinergic hypothesis is considered the most effective target for treating mild to moderate AD. Present study aims to identify new scaffolds for inhibiting acetylcholinesterase activity.

View Article and Find Full Text PDF

Aim: To investigate the efficacy of lactoferrin nanoparticles (LfNPs) in delivering siRNA across the blood-brain barrier to treat glioblastoma multiforme (GBM) and with an additional objective of potentiation of conventional temozolomide (TMZ) chemotherapy.

Methods: Aurora kinase B (AKB) siRNA-loaded nanoparticles (AKB-LfNPs) were prepared with milk protein, lactoferrin, by water in oil emulsion method. AKB-LfNPs were tested in cell lines and in GBM orthotopic mouse model with and without TMZ treatment.

View Article and Find Full Text PDF

Of the mammalian topoisomerase (Topo)-2 isozymes (α and β), Topo-2β protein has been reported to regulate neuronal development and differentiation. However, the status of Topo-2β in all-trans retinoic acid (ATRA)-treated human neuroblastoma (SK-N-SH) cells is not understood. More information about the effects of ATRA on SK-N-SH cells is needed to reveal the role of ATRA in the regulation of Topo-2β levels and spontaneous regression of SK-N-SH cells to predict the clinical activity.

View Article and Find Full Text PDF

Multiple prevention therapy has gained importance for the prevention and treatment of sexually transmitted diseases, especially HIV/AIDS. Antiretroviral drugs encapsulated in nanoparticles have been developed for efficient delivery of the drugs to the vaginal surface. Lactoferrin nanoparticles (LFNPs) encapsulating anticancer or antiretroviral drugs are found to be promising agents to specifically deliver drugs at the target sites.

View Article and Find Full Text PDF

We characterize Rv0474, a putative transcriptional regulatory protein of Mycobacterium tuberculosis, which is found to function as a copper-responsive transcriptional regulator at toxic levels of copper. It is an autorepressor, but at elevated levels (10-250 μm) of copper ions the repression is relieved resulting in an increase in Rv0474 expression. Copper-bound Rv0474 is recruited to the rpoB promoter leading to its repression resulting in the growth arrest of the bacterium.

View Article and Find Full Text PDF

Purpose: Colon adenocarcinoma is the most common form of gastro intestinal tract cancer, predominantly in ageing population. Chemotherapy with 5-Fluorouracil and oxaliplatin is an indispensable treatment regimen, nevertheless having limitation of systemic toxicity and lower therapeutic index. The present study is based on evaluation of anti-proliferative potential, pharmacokinetics parameters, safety profile, biodistribution and efficacy of 5-FU/oxaliplatin loaded lactoferrin nanoparticles in cell lines and wistar rats in order to overcome the above limitation.

View Article and Find Full Text PDF

Efficient gene delivery facilitated by non-viral vectors, is comparatively safer alternative than viral carriers. Current approaches to gene delivery largely depends on methods that overcome cellular and tissue barriers impeding efficient DNA delivery. While the conventional delivery systems have the drawback of low cellular uptake and off target effects, the receptor-mediated gene delivery system has shown remarkable breakthrough.

View Article and Find Full Text PDF

Aim: A structural study of a series of pyridine dicoumarol derivatives with potential activity against a novel Topoisomerase IIβ kinase which was identified in the HIV-1 viral lysate, compounds were designed and synthesized based on a 3D-QSAR study.

Materials & Methods: Based on QSAR model we have designed and synthesized a series of pyridine dicoumarol derivatives and characterized by spectral studies, all the molecules are biologically evaluated by kinase assay, cytotoxicity assay, ELISA and PCR method.

Result: We demonstrated the achievement of water soluble disodium pyridine dicoumarate derivatives showing high anti-HIV-1 activity (IC <25 nM) which provides a crucial point for further development of pyridine dicoumarol series as HIV-1-associated topoisomerase IIβ kinase inhibitors for clinical application against AIDS.

View Article and Find Full Text PDF

Targeted delivery of drugs to the brain is challenging due to the restricted permeability across the blood brain barrier (BBB). Gliomas are devastating cancers and their positive treatment outcome using Temozolomide (TMZ) is limited due to its short plasma half-life, systemic toxicity and limited access through the blood-brain barrier (BBB). Nanoparticles made of Lactoferrin (Lf) protein, have been shown to enhance the pharmacological properties of drugs.

View Article and Find Full Text PDF

Topoisomerase IIβ is a type II DNA topoisomerase that was reported to be expressed in all mammalian cells but abundantly expressed in cells that have undergone terminal differentiation to attain a post mitotic state. Enzymatically it catalyzes ATP-dependent topological changes of double stranded DNA, while as a protein it was reported to be associated with several factors in promoting cell growth, migration, DNA repair and transcription regulation. The cellular roles of topoisomerase IIβ are very less understood compared to its counterpart topoisomerase IIα.

View Article and Find Full Text PDF

Objectives: Efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor, is a drug that is frequently included in highly active antiretroviral therapy for treatment of HIV infection. Decreased bioavailability and increased toxicity limit its use. We report a formulation of efavirenz-loaded lactoferrin nanoparticles (lacto-EFV-nano) for oral delivery which exhibited significantly improved pharmacological properties coupled with reduced toxicity compared with its free form.

View Article and Find Full Text PDF

Purpose: To enhance efficacy, bioavailability and reduce toxicity of first-line highly active anti-retroviral regimen, zidovudine + efavirenz + lamivudine loaded lactoferrin nanoparticles were prepared (FLART-NP) and characterized for physicochemical properties, bioactivity and pharmacokinetic profile.

Methods: Nanoparticles were prepared using sol-oil protocol and characterized using different sources such as FE-SEM, AFM, NanoSight, and FT-IR. In-vitro and in-vivo studies have been done to access the encapsulation-efficiency, cellular localization, release kinetics, safety analysis, biodistribution and pharmacokinetics.

View Article and Find Full Text PDF