This paper provides a comprehensive overview of the security vulnerability known as rowhammer in Dynamic Random-Access Memory (DRAM). While DRAM offers many desirable advantages, including low latency, high density, and cost-effectiveness, rowhammer vulnerability, first identified in 2014, poses a significant threat to computing systems. Rowhammer attacks involve repetitive access to specific DRAM rows, which can cause bit flips in neighboring rows, potentially compromising system credentials, integrity, and availability.
View Article and Find Full Text PDFSpin-transfer torque magnetic random-access memory (STT-MRAM) has several desirable features, such as non-volatility, high integration density, and near-zero leakage power. However, it is challenging to adopt STT-MRAM in a wide range of memory applications owing to the long write latency and a tradeoff between read stability and write ability. To mitigate these issues, an STT-MRAM bit cell can be designed with two transistors to support multiple ports, as well as the independent optimization of read stability and write ability.
View Article and Find Full Text PDF