Microbial synthetic epigenetics offers significant opportunities for the design of synthetic biology tools by leveraging reversible gene control mechanisms without altering DNA sequences. However, limited understanding and a lack of technologies for thorough analysis of the mechanisms behind epigenetic modifications have hampered their utilization in biotechnological applications. In this review, we explore advancements in developing epigenetic-based synthetic gene regulatory tools at both transcriptional and post-transcriptional levels.
View Article and Find Full Text PDFMicrobial chassis engineering is the milestone of efficient biotechnological applications. However, microbial chassis cell engineering is adversely affected by (i) regulatory tool orthogonality, (ii) host metabolic fitness, and (iii) cell population heterogeneity. Herein, we explore how synthetic epigenetics can potentially address these limitations and offer insights into prospects in this field.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
February 2022
Background: Biomass formation and product synthesis decoupling have been proven to be promising to increase the titer of desired value add products. Optogenetics provides a potential strategy to develop light-induced circuits that conditionally control metabolic flux redistribution for enhanced microbial production. However, the limited number of light-sensitive proteins available to date hinders the progress of light-controlled tools.
View Article and Find Full Text PDFL-theanine, an amino acid known for its favourable taste and linked with health benefits, can be prepared by enzymatic synthesis using γ-glutamyltranspeptidase (GGT; E.C 2.3.
View Article and Find Full Text PDF