Publications by authors named "Komanec M"

This paper presents an experimental evaluation of two types of light-emitting diode (LED)-based distributed transmitters, namely an LED strip and an LED-coupled side-emitting optical fiber, in both laboratory and wearable optical camera communication (OCC) systems. We study the system performance in terms of success of reception (SoR) with regard to the transmission distance. The best value of SoR is achieved when the camera is facing directly to the transmitter (T) from a close distance of 1 m.

View Article and Find Full Text PDF

We present a distributed receiver for visible light communication based on a side-emitting optical fiber. We show that 500 kbps data rate can be captured with a bit-error rate below the forward-error correction limit of 3.8·10 with a light-emitting diode (LED) transmitter 25 cm away from the fiber, whereas by increasing the photodetector gain and reducing the data rate down to 50 kbps, we improve the LED-fiber distance significantly up to 4 m.

View Article and Find Full Text PDF

We present a design approach for a long-distance optical camera communication (OCC) system using side-emitting fibers as distributed transmitters. We demonstrate our approach feasibility by increasing the transmission distance by two orders up to 40 m compared to previous works. Furthermore, we explore the effect of the light-emitting diode (LED) modulation frequency and rolling shutter camera exposure time on inter-symbol interference and its effective mitigation.

View Article and Find Full Text PDF

By modifying the interconnection design between standard single-mode fiber (SSMF) and nested antiresonant nodeless type hollow-core fiber (NANF), we create an air gap between SSMF and NANF. This air gap enables the insertion of optical elements, thus providing additional functions. We show low-loss coupling using various graded-index multimode fibers acting as mode-field adapters resulting in different air-gap distances.

View Article and Find Full Text PDF

We report simultaneous low coupling loss (below 0.2 dB at 1550 nm) and low back-reflection (below -60 dB in the 1200-1600 nm range) between a hollow core fiber and standard single mode optical fiber obtained through the combination of an angled interface and an anti-reflective coating. We perform experimental optimization of the interface angle to achieve the best combination of performance in terms of the coupling loss and back-reflection suppression.

View Article and Find Full Text PDF

Today's lowest-loss hollow core fibers are based on antiresonance guidance. They have been shown both theoretically and experimentally to have very low levels of backscattering arising from the fiber structure - 45 dB below that of traditional optical fibers with a solid silica glass core. This makes their longitudinal characterization using conventional reflectometric techniques very challenging.

View Article and Find Full Text PDF

The telecommunication world is experiencing the 5th generation (5G) networks deployment including the use of millimeter wave (mmW) frequency bands to satisfy capacity demands. This leads to the extensive use of optical communications, especially the optical fiber connectivity at the last mile access and the edge networks. In this paper we outline fiber and free space optics (FSO) technologies for use as part of the 5G optical fronthaul network.

View Article and Find Full Text PDF

In this Letter, we propose and demonstrate a novel wireless communications link using an illuminating optical fiber as a transmitter (Tx) in optical camera communications. We demonstrate an indoor proof-of-concept system using an illuminating plastic optical fiber coupled with a light-emitting diode and a commercial camera as the Tx and the receiver, respectively. For the first time, to the best of our knowledge, we experimentally demonstrate flicker-free wireless transmission within the off-axis camera rotation angle range of 0-45° and the modulation frequencies of 300 and 500 Hz.

View Article and Find Full Text PDF

We demonstrate halving the record-low loss of interconnection between a nested antiresonant nodeless type hollow-core fiber (NANF) and standard single-mode fiber (SMF). The achieved interconnection loss of 0.15 dB is only 0.

View Article and Find Full Text PDF

A monolithic fiber laser operating in the short wavelength infrared that is suitable for CO gas sensing applications is proposed and presented. The current study reports a laser design based on the direct inscription of a monolithic Fabry-Perot (FP) cavity in a thulium-doped optical fiber using the femtosecond laser (FsL) plane-by-plane inscription method to produce the cavity mirrors. The FP cavity was inscribed directly into the active fiber using two wavelength-identical fiber Bragg gratings (FBGs), one with high and one with low reflectivity.

View Article and Find Full Text PDF

We present a hybrid radiofrequency and microwave photonic link at 25 GHz using the chromatic dispersion of an optical fiber to steer the beam of a three-element planar dipole-based phased antenna array (PAA). Our team has designed and developed an in-house built PAA, experimentally verified its parameters, and successfully demonstrated optically controlled beam steering as measured in an anechoic chamber. Moreover, a detailed analysis of the optically based beam steering in the proposed microwave photonics system has been carried out, with data transmission achieving an error vector magnitude as low as 5.

View Article and Find Full Text PDF

Two experimental configurations of a hybrid K-band (25 GHz) microwave photonic link (MPL) are investigated for seamless broadband wireless access networks. Experimental configurations consist of optical fiber, free-space optics (FSO) and radio frequency (RF) wireless channels. We analyze in detail the effects of channel impairments, namely fiber chromatic dispersion, atmospheric turbulence and multipath-induced fading on the transmission performance.

View Article and Find Full Text PDF

This paper presents experimental results for an all-optical free-space optical (FSO) relay-assisted system by employing an all-optical regenerate and forward (AORF) scheme in order to increase the transmission link span. The ultra-short pulse (i.e.

View Article and Find Full Text PDF

This Letter outlines radio-over-fiber combined with radio-over-free-space optics (RoFSO) and radio frequency free-space transmission, which is of particular relevance for fifth-generation networks. Here, the frequency band of 24-26 GHz is adopted to demonstrate a low-cost, compact, and high-energy-efficient solution based on the direct intensity modulation and direct detection scheme. For our proof-of-concept demonstration, we use 64 quadrature amplitude modulation with a 100 MHz bandwidth.

View Article and Find Full Text PDF

Detecting explosive, flammable, or toxic industrial liquids reliably and accurately is a matter of civic responsibility that cannot be treated lightly. Tapered optical fibers (TOFs) and suspended core microstructured optical fibers (SC MOFs) were separately used as sensors of liquids without being compared to each other. We present a highly sensitive time-stable TOF sensor incorporated in the pipeline system for the in-line regime of measurement.

View Article and Find Full Text PDF

We present theoretical and experimental results for a fiber optic refractometric sensor employing a semi-ellipsoidal sensing element made of polymethyl methacrylate. The double internal reflection of light inside the element provides sensitivity to the refractive index of the external analyte. We demonstrate that the developed sensor, operating at a wavelength of 632 nm, is capable of measurement within a wide range of refractive indices from n=1.

View Article and Find Full Text PDF

A silica suspended-core microstructured optical fiber sensor for detection of liquids, operating at 1550 nm, is analyzed. The sensing principle is based on the evanescent wave overlap into a tested analyte, which is filled via capillary forces into the cladding holes. Validations for analytes in the refractive index range of 1.

View Article and Find Full Text PDF

This Letter presents original measurement results from an all-optical 10 Gbit/s free-space optics (FSO) relay link involving two FSO links and an all-optical switch. Considering the fact that reported analyses of relay links are dominated by analytical findings, the experimental results represent a vital resource for evaluating the performance of relay FSO links in the presence of atmospheric turbulence. Bit-error-rate (BER) performance of the relay system is tested for single and dual-hop links under several turbulence regimes.

View Article and Find Full Text PDF