Publications by authors named "Komal Tyagi"

Background: Epithelial ovarian cancer, especially high grade serous ovarian cancer (HGSOC) is by far, the most lethal gynecological malignancy with poor prognosis and high relapse rate. Despite of availability of several therapeutic interventions including poly-ADP ribose polymerase (PARP) inhibitors, HGSOC remains unmanageable and identification of early detection biomarkers and therapeutic targets for this lethal malady is highly warranted. Aberrant expression of protein kinase C iota (PKCί) is implicated in many cellular and physiological functions involved in tumorigenesis including cell proliferation and cell cycle deregulation.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy with poor prognosis and dismal patient survival. Although protein kinase D (PKD) isoforms, especially PKD2 and PKD3 are critical for many cellular and physiological functions involved in carcinogenesis including cell proliferation and angiogenesis, their role in human EOC remains unknown. Towards the goal to identify novel prognostic biomarker and therapeutic interventions against EOC, this study aimed to elucidate the molecular roles of PKD2, PKD3 and highly selective, pan-PKD inhibitor CRT0066101 in this lethal pathology.

View Article and Find Full Text PDF

Purpose: Cancer is one of the deadliest pathologies with more than 19 million new cases and 10 million cancer-related deaths across the globe. Despite development of advanced therapeutic interventions, cancer remains as a fatal pathology due to lack of early prognostic biomarkers, therapy resistance and requires identification of novel drug targets.

Methods: Runt-related transcription factors (Runx) family controls several cellular and physiological functions including osteogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Gynecological cancers, affecting the female reproductive system, are significant global health threats due to high rates of relapse and mortality, despite advances in treatments like PARP inhibitors.* -
  • Research shows that disruptions in the normal microbiome (dysbiosis) are linked to these cancers, with specific microbial populations correlated with severe cases and types, such as an increase in Proteobacteria and a decrease in Lactobacilli in ovarian cancer.* -
  • Understanding how these microbial changes influence immune responses and gene expression could lead to the development of early diagnostic tools and new prevention and treatment strategies for gynecological cancers.*
View Article and Find Full Text PDF

Phosphoinositide metabolism is crucial intracellular signaling system that regulates a plethora of biological functions including mitogenesis, cell proliferation and division. Phospholipase C gamma 1 (PLCγ1) which belongs to phosphoinositide-specific phospholipase C (PLC) family, is activated by many extracellular stimuli including hormones, neurotransmitters, growth factors and modulates several cellular and physiological functions necessary for tumorigenesis such as cell survival, migration, invasion and angiogenesis by generating inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) via hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Cancer remains as a leading cause of global mortality and aberrant expression and regulation of PLCγ1 is linked to a plethora of deadly human cancers including carcinomas of the breast, lung, pancreas, stomach, prostate and ovary.

View Article and Find Full Text PDF

Epithelial ovarian cancer, the most lethal gynecological malignancy, is diagnosed at advanced stage, recurs and displays chemoresistance to standard chemotherapeutic regimen of taxane/platinum drugs. Despite development of recent therapeutic approaches including poly-ADP ribose polymerase inhibitors, this fatal disease is diagnosed at advanced stage and heralds strategies for early detection and improved treatment. Recent literature suggests that high propensity of ovarian cancer cells to consume and metabolize glucose via glycolysis even in the presence of oxygen (the 'Warburg effect') can significantly contribute to disease progression and chemoresistance and hence, it has been exploited as novel drug target.

View Article and Find Full Text PDF

Ovarian cancer, especially high grade serous ovarian cancer is one of the most lethal gynaecological malignancies with high relapse rate and patient death. Notwithstanding development of several targeted treatment and immunotherapeutic approaches, researchers fail to turn ovarian cancer into a manageable disease. Protein kinase C (PKC) and protein kinase D (PKD) are families of evolutionarily conserved serine/threonine kinases that can be activated by a plethora of extracellular stimuli such as hormones, growth factors and G-protein coupled receptor agonists.

View Article and Find Full Text PDF