Publications by authors named "Komal Rathi"

Background And Purpose: Cancers show heterogeneity at various levels, from genome to radiological imaging. This study aimed to explore the interplay between genomic, transcriptomic, and radiophenotypic data in pediatric low-grade glioma (pLGG), the most common group of brain tumors in children.

Materials And Methods: We analyzed data from 201 pLGG patients in the Children's Brain Tumor Network (CBTN), using principal component analysis and K-Means clustering on 881 radiomic features, along with clinical variables (age, sex, tumor location), to identify imaging clusters and examine their association with 2021 WHO pLGG classifications.

View Article and Find Full Text PDF

Bis(indolyl)methanes (BIMs) are a class of compounds known for their diverse biological activities, including potential anticancer properties. Modern synthetic chemistry techniques are examined in this work to develop and manufacture novel anticancer medications with increased effectiveness and fewer side effects. The cytotoxic efficacy of a moderate and very effective method for creating pharmacologically active BIMs 3a-j using ZrO2 nanoparticles as a catalyst was assessed against the MCF-7 breast cancer cell line.

View Article and Find Full Text PDF
Article Synopsis
  • Pediatric low-grade gliomas (pLGGs) show varying treatment responses and poor outcomes when complete tumor removal isn't possible, making early treatment prediction important.
  • A radiogenomic analysis combining MRI and RNA sequencing reveals three immune clusters in pLGGs, with one cluster having higher immune activity but worse prognosis, suggesting they might benefit from immunotherapy.
  • A developed radiomic signature accurately predicts these immune profiles and progression-free survival, identifying high-risk patients for potential targeted therapies.
View Article and Find Full Text PDF

Cancer immunotherapies produce remarkable results in B cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor and normal tissues to identify biologically relevant cell surface immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer. Proteogenomic analyses reveal sixty high-confidence candidate immunotherapeutic targets, and we prioritize delta-like canonical notch ligand 1 (DLK1) for further study.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) treatments, such as DNA-damaging agents like carboplatin, pose considerable human toxicity and may contribute to cancer relapse. Artemisinin derivatives offer a less toxic alternative; however, their specific role in TNBC management remains to be established. To address this gap, computational models were employed to design and evaluate artemisinin-based prototypes as potential TNBC therapeutics, aiming to provide safer and more effective treatment options for this aggressive cancer subtype.

View Article and Find Full Text PDF

Pediatric brain cancer is the leading cause of disease-related mortality in children, and many aggressive tumors still lack effective treatment strategies. We characterized aberrant alternative splicing across pediatric brain tumors, identifying pediatric high-grade gliomas (HGGs) among the most heterogeneous. Annotating these events with UniProt, we identified 11,940 splice events in 5,368 genes leading to potential protein function changes.

View Article and Find Full Text PDF
Article Synopsis
  • The Open Pediatric Cancer (OpenPedCan) Project builds upon the earlier Open Pediatric Brain Tumor Atlas, analyzing data from over 6,000 pediatric cancer patients and providing a vast multi-omic dataset from various tumor types.
  • The project integrates multiple genomic and proteomic data types, allowing researchers to access harmonized data through platforms like GitHub, CAVATICA, and AWS.
  • OpenPedCan enhances molecular subtyping of tumors by incorporating methylation information, facilitating research that supports more accurate diagnosis and treatment strategies in pediatric cancer.
View Article and Find Full Text PDF

We report herein a highly efficient and mild approach for synthesizing pharmacologically active bis(indolyl)methanes 3a-z, utilizing ZrO nanoparticles as a catalyst. The method involves a condensation reaction between indole and diverse aromatic aldehydes in acetonitrile under mild conditions. The ZrO nano-catalyst prepared a co-precipitation method demonstrates exceptional efficacy, leading to favourable yields of the target bis(indolyl)methanes 3a-z.

View Article and Find Full Text PDF

This study investigates cutting-edge synthetic chemistry approaches for designing and producing innovative antimalarial drugs with improved efficacy and fewer adverse effects. Novel amino (-NH) and hydroxy (-OH) functionalized 11-azaartemisinins 9, 12, and 14 were synthesized along with their derivatives 11a, 13a-e, and 15a-b through ART and were tested for their AMA (antimalarial activity) against Plasmodium yoelii via intramuscular (i.m.

View Article and Find Full Text PDF
Article Synopsis
  • The emergence of drug-resistant malaria parasites has intensified the need for new, effective antimalarial drugs, leading to various strategies like combination therapies and the utilization of drug resistance reversal agents.
  • Current treatments, particularly artemisinin derivatives, face limitations due to their natural scarcity, prompting research into synthetic alternatives.
  • The review emphasizes the promising potential of 1,2,4-trioxanes and their derivatives as alternatives, detailing their synthesis, mechanisms, and recent advancements in their antimalarial activity from 1988 to 2023.
View Article and Find Full Text PDF

Unlabelled: Cancer immunotherapies have produced remarkable results in B-cell malignancies; however, optimal cell surface targets for many solid cancers remain elusive. Here, we present an integrative proteomic, transcriptomic, and epigenomic analysis of tumor specimens along with normal tissues to identify biologically relevant cell surface proteins that can serve as immunotherapeutic targets for neuroblastoma, an often-fatal childhood cancer of the developing nervous system. We apply this approach to human-derived cell lines (N=9) and cell/patient-derived xenograft (N=12) models of neuroblastoma.

View Article and Find Full Text PDF

Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus, we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Children's Brain Tumor Network (CBTN) and Pacific Pediatric Neuro-Oncology Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and sequencing with immediate access to harmonized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically characterize 1,074 pediatric brain tumors.

View Article and Find Full Text PDF

The demand for novel, fast-acting, and effective antimalarial medications is increasing exponentially. Multidrug resistant forms of malarial parasites, which are rapidly spreading, pose a serious threat to global health. Drug resistance has been addressed using a variety of strategies, such as targeted therapies, the hybrid drug idea, the development of advanced analogues of pre-existing drugs, and the hybrid model of resistant strains control mechanisms.

View Article and Find Full Text PDF

Neuroblastomas have neuroendocrine features and often show similar gene expression patterns to small cell lung cancer including high expression of delta-like ligand 3 (). Here we determine the efficacy of rovalpituzumab tesirine (Rova-T), an antibody drug conjugated (ADC) with a pyrrolobenzodiazepine (PBD) dimer toxin targeting DLL3, in preclinical models of human neuroblastoma. We evaluated DLL3 expression in RNA sequencing data sets and performed immunohistochemistry (IHC) on neuroblastoma patient derived xenograft (PDX), human neuroblastoma primary tumor and normal childhood tissue microarrays (TMAs).

View Article and Find Full Text PDF

Mitochondrial dysfunction can be associated with a range of clinical manifestations. Here, we report a family with a complex phenotype including combinations of connective tissue, neurological, and metabolic symptoms that were passed on to all surviving children. Analysis of the maternally inherited mtDNA revealed a novel genotype encompassing the haplogroup J - defining mitochondrial DNA (mtDNA) m.

View Article and Find Full Text PDF

Background: Pediatric brain tumors are the leading cause of cancer death in children with an urgent need for innovative therapies. Glypican 2 (GPC2) is a cell surface oncoprotein expressed in neuroblastoma for which targeted immunotherapies have been developed. This work aimed to characterize GPC2 expression in pediatric brain tumors and develop an mRNA CAR T cell approach against this target.

View Article and Find Full Text PDF

The synthesis and characterization of a new octahedral Zr(IV) complex of oxygen-depleted ,-type calixarene ligand comprising two distal-functionalized pyrazole rings have been reported. The cone shape and structure of the prepared complex were confirmed univocally by single-crystal X-ray diffraction and NMR studies. The Zr metal lies at 2.

View Article and Find Full Text PDF

Primary mitochondrial diseases (PMDs) are a heterogeneous group of metabolic disorders that can be caused by hundreds of mutations in both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) genes. Current therapeutic approaches are limited, although one approach has been exercise training. Endurance exercise is known to improve mitochondrial function in heathy subjects and reduce risk for secondary metabolic disorders such as diabetes or neurodegenerative disorders.

View Article and Find Full Text PDF

The degree of metastatic disease varies widely among patients with cancer and affects clinical outcomes. However, the biological and functional differences that drive the extent of metastasis are poorly understood. We analyzed primary tumors and paired metastases using a multifluorescent lineage-labeled mouse model of pancreatic ductal adenocarcinoma (PDAC)-a tumor type in which most patients present with metastases.

View Article and Find Full Text PDF
Article Synopsis
  • Inverted papilloma (IP) is a sinonasal tumor with the potential to become malignant, and the study aimed to discover associated genes and pathways during its progression to more severe forms like carcinoma-in-situ and invasive carcinoma.
  • A targeted sequencing method was employed to analyze 24 tumors from different stages of progression, leading to the identification of 11 genes that progressively increase in expression from IP to invasive carcinoma.
  • The findings suggest that these genes could improve the accuracy of histological classifications and play a significant role in treatment decisions and patient outcomes, with the potential for earlier identification of risk in future studies.
View Article and Find Full Text PDF

Glypican 2 (GPC2) is a MYCN-regulated, differentially expressed cell-surface oncoprotein and target for immune-based therapies in neuroblastoma. Here, we build on GPC2's immunotherapeutic attributes by finding that it is also a highly expressed, MYCN-driven oncoprotein on small-cell lung cancers (SCLCs), with significantly enriched expression in both the SCLC and neuroblastoma stem cell compartment.By solving the crystal structure of the D3-GPC2-Fab/GPC2 complex at 3.

View Article and Find Full Text PDF

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) play an important role in tumor immunity and comprise of subsets that have distinct phenotype, function, and ontology. Transcriptomic analyses of human medulloblastoma, the most common malignant pediatric brain cancer, showed that medulloblastomas (MBs) with activated sonic hedgehog signaling (SHH-MB) have significantly more TAMs than other MB subtypes. Therefore, we examined MB-associated TAMs by single-cell RNA sequencing of autochthonous murine SHH-MB at steady state and under two distinct treatment modalities: molecular-targeted inhibitor and radiation.

View Article and Find Full Text PDF

One of the greatest barriers to curative treatment of neuroblastoma is its frequent metastatic outgrowth prior to diagnosis, especially in cases driven by amplification of the oncogene. However, only a limited number of regulatory proteins that contribute to this complex -mediated process have been elucidated. Here we show that the () gene, located at chromosome band 17p13.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontj6gjf5f5p6nio4oi2ho7jtq33f3jcdd): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once