Ineffective endometrial matrix remodeling, a key factor in infertility, impedes embryo implantation in the uterine wall. Our study reveals the cellular and molecular impact of human collagenase-1 administration in mouse uteri, demonstrating enhanced embryo implantation rates. Collagenase-1 promotes remodeling of the endometrial ECM, degrading collagen fibers and proteoglycans.
View Article and Find Full Text PDFProteolytic processes on cell surfaces and extracellular matrix (ECM) sustain cell behavior and tissue integrity in health and disease. Matrix metalloproteases (MMPs) and a disintegrin and metalloproteases (ADAMs) remodel cell microenvironments through irreversible proteolysis of ECM proteins and cell surface bioactive molecules. Pan-MMP inhibitors in inflammation and cancer clinical trials have encountered challenges due to promiscuous activities of MMPs.
View Article and Find Full Text PDFThe fate of hematopoietic stem and progenitor cells (HSPC) is tightly regulated by their bone marrow (BM) microenvironment (ME). BM transplantation (BMT) frequently requires irradiation preconditioning to ablate endogenous hematopoietic cells. Whether the stromal ME is damaged and how it recovers after irradiation is unknown.
View Article and Find Full Text PDFNeutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils.
View Article and Find Full Text PDFHematopoietic stem and progenitor cells (HSPCs) are essential for daily mature blood cell production, host immunity, and osteoclast-mediated bone turnover. The timing at which stem cells give rise to mature blood and immune cells while maintaining the bone marrow (BM) reservoir of undifferentiated HSPCs and how these opposite tasks are synchronized are poorly understood. Previous studies revealed that daily light onset activates norepinephrine (NE)-induced BM CXCL12 downregulation, followed by CXCR4 HSPC release to the circulation.
View Article and Find Full Text PDFHematopoietic stem and progenitor cells (HSPCs) tightly couple maintenance of the bone marrow (BM) reservoir, including undifferentiated long-term repopulating hematopoietic stem cells (LT-HSCs), with intensive daily production of mature leukocytes and blood replenishment. We found two daily peaks of BM HSPC activity that are initiated by onset of light and darkness providing this coupling. Both peaks follow transient elevation of BM norepinephrine and TNF secretion, which temporarily increase HSPC reactive oxygen species (ROS) levels.
View Article and Find Full Text PDFBone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties.
View Article and Find Full Text PDFThe common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/protease-activated receptor-1 (PAR1) signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation.
View Article and Find Full Text PDFRetention of long-term repopulating hematopoietic stem cells (LT-HSCs) in the bone marrow is essential for hematopoiesis and for protection from myelotoxic injury. We report that signaling cascades that are traditionally viewed as coagulation related also control retention of endothelial protein C receptor-positive (EPCR(+)) LT-HSCs in the bone marrow and their recruitment to the blood via two pathways mediated by protease activated receptor 1 (PAR1). Thrombin-PAR1 signaling induces nitric oxide (NO) production, leading to EPCR shedding mediated by tumor necrosis factor-α-converting enzyme (TACE), enhanced CXCL12-CXCR4-induced motility and rapid stem and progenitor cell mobilization.
View Article and Find Full Text PDFSignificance: Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function.
View Article and Find Full Text PDFPharmaceuticals (Basel)
September 2013
Hematopoietic stem cells (HSCs) are mostly retained in a quiescent non-motile mode in their bone marrow (BM) niches, shifting to a migratory cycling and differentiating state to replenish the blood with mature leukocytes on demand. The balance between the major chemo-attractants CXCL12, predominantly in the BM, and S1P, mainly in the blood, dynamically regulates HSC recruitment to the circulation versus their retention in the BM. During alarm situations, stress-signals induce a decrease in CXCL12 levels in the BM, while S1P levels are rapidly and transiently increased in the circulation, thus favoring mobilization of stem cells as part of host defense and repair mechanisms.
View Article and Find Full Text PDFThe role of corticosterone (Cort), the immune system's major stress hormone, in the regulation of hematopoietic stem and progenitor cells (HSPCs) and their dynamic bone marrow (BM) microenvironment is currently unknown. We report that corticotropin-releasing factor receptor 1 (CRFR1) mutant mice with chronically low Cort levels showed aberrant HSPC regulation, having higher HSPC numbers and upregulation of the chemokine CXCL12, phenotypes that were restored by Cort supplementation. Expanded stromal progenitors known to support HSPCs were also observed in these low-Cort-containing mice.
View Article and Find Full Text PDFHematopoietic stem and progenitor cells (HSPCs) are regulated by various bone marrow stromal cell types. Here we identified rare activated bone marrow monocytes and macrophages with high expression of α-smooth muscle actin (α-SMA) and the cyclooxygenase COX-2 that were adjacent to primitive HSPCs. These myeloid cells resisted radiation-induced cell death and further upregulated COX-2 expression under stress conditions.
View Article and Find Full Text PDFCytokine-induced expansion of hematopoietic stem and progenitor cells (HSPCs) is not fully understood. In the present study, we show that whereas steady-state hematopoiesis is normal in basic fibroblast growth factor (FGF-2)-knockout mice, parathyroid hormone stimulation and myeloablative treatments failed to induce normal HSPC proliferation and recovery. In vivo FGF-2 treatment expanded stromal cells, including perivascular Nestin(+) supportive stromal cells, which may facilitate HSPC expansion by increasing SCF and reducing CXCL12 via mir-31 up-regulation.
View Article and Find Full Text PDFAdult hematopoietic stem cells (HSC) continuously replenish the blood with immune and blood cells with a finite life span, from the bone marrow (BM) reservoir of immature and maturing leukocytes. Regulation of HSC migration and development is essential for their function and blood cell production. These diverse and multiple states require a tight regulation to efficiently address host defense and repair requirements.
View Article and Find Full Text PDF