Patient-tailored intracavitary/interstitial (IC/IS) brachytherapy (BT) applicators may increase dose conformity in cervical cancer patients. Current configuration planning methods in these custom applicators rely on manual specification or a small set of (straight) needles. This work introduces and validates a two-stage approach for establishing channel configurations in the 3D printed patient-tailored ARCHITECT applicator.
View Article and Find Full Text PDFBackground: Electromagnetic Tracking (EMT) technology has been integrated in a prototype high-dose-rate brachytherapy (HDR-BT) afterloading device. Its potential for dwell position (DP) monitoring has earlier been demonstrated in prostate phantoms. However, its performance for prostate BT in the clinical setting remains to be assessed.
View Article and Find Full Text PDFProstate cancer patients with an enlarged prostate and/or excessive pubic arch interference (PAI) are generally considered non-eligible for high-dose-rate (HDR) brachytherapy (BT). Steerable needles have been developed to make these patients eligible again. This study aims to validate the dosimetric impact and performance of steerable needles within the conventional clinical setting.
View Article and Find Full Text PDFBackground: Electromagnetic tracking (EMT) systems have proven to be a valuable source of information regarding the location and geometry of applicators in patients undergoing brachytherapy (BT). As an important element of an enhanced and individualized pre-treatment verification, EMT can play a pivotal role in detecting treatment errors and uncertainties to increase patient safety.
Purpose: The purpose of this study is two-fold: to design, develop and test a dedicated measurement protocol for the use of EMT-enabled afterloaders in BT and to collect and compare the data acquired from three different radiation oncology centers in different clinical environments.
Background And Purpose: Although MRI-based image guided adaptive brachytherapy (IGABT) for locally advanced cervical cancer (LACC) has resulted in favorable outcomes, it can be logistically complex and time consuming compared to 2D image-based brachytherapy, and both physically and emotionally intensive for patients. This prospective study aims to perform time-action and patient experience analyses during IGABT to guide further improvements.
Materials And Methods: LACC patients treated with IGABT were included for the time-action (56 patients) and patient experience (29 patients) analyses.
Purpose: Intra-operative radiotherapy (IORT) has been used as a tool to provide a high-dose radiation boost to a limited volume of patients with fixed tumors with a likelihood of microscopically involved resection margins, in order to improve local control. Two main techniques to deliver IORT include high-dose-rate (HDR) brachytherapy, termed 'intra-operative brachytherapy' (IOBT), and electrons, termed 'intra-operative electron radiotherapy' (IOERT), both having very different dose distributions. A recent paper described an improved local recurrence-free survival favoring IOBT over IOERT for patients with locally advanced or recurrent rectal cancer and microscopically irradical resections.
View Article and Find Full Text PDFIn high-dose-rate brachytherapy (HDR-BT) for prostate cancer treatment, interstitial hyperthermia (IHT) is applied to sensitize the tumor to the radiation (RT) dose, aiming at a more efficient treatment. Simultaneous application of HDR-BT and IHT is anticipated to provide maximum radiosensitization of the tumor. With this rationale, the ThermoBrachyTherapy applicators have been designed and developed, enabling simultaneous irradiation and heating.
View Article and Find Full Text PDFThe combination of interstitial hyperthermia treatment (IHT) with high dose rate brachytherapy (HDR-BT) can improve clinical outcomes since it highly enhances the efficiency of cell kill, especially when applied simultaneously. Therefore, we have developed the ThermoBrachy applicators. To effectively apply optimal targeted IHT, treatment planning is considered essential.
View Article and Find Full Text PDFObjective: In High Dose Rate Brachytherapy for prostate cancer there is a need for a new way of increasing cancer cell kill in combination with a stable dose to the organs at risk. In this study, we propose a novel ThermoBrachy applicator that offers the unique ability to apply interstitial hyperthermia while simultaneously serving as an afterloading catheter for high dose rate brachytherapy for prostate cancer. This approach achieves a higher thermal enhancement ratio than in sequential application of radiation and hyperthermia and has the potential to decrease the overall treatment time.
View Article and Find Full Text PDFBrachytherapy is a common treatment in cervical, uterine and vaginal cancer management. The technique is characterised by rapid developments in the fields of medical imaging, dosimetry planning and personalised medical device design. To reduce unnecessary burden on patients, assessments and training of these technologies should preferable be done using high-fidelity physical phantoms.
View Article and Find Full Text PDFPurpose: Intraoperative radiation therapy (IORT), delivered by intraoperative electron beam radiation therapy (IOERT) or high-dose-rate intraoperative brachytherapy (HDR-IORT), may reduce the local recurrence rate in patients with locally advanced and locally recurrent rectal cancer (LARC and LRRC, respectively). The aim of this study was to compare the oncological outcomes between both IORT modalities in patients with LARC or LRRC who underwent a microscopic irradical (R1) resection.
Methods: All consecutive patients who received IORT because of an R1 resection of LARC or LRRC between 2000 and 2016 in two tertiary referral centers were included.
Background And Purpose: To investigate the accuracy of dwell position detection with a combined electromagnetic tracking (EMT) brachytherapy (BT) system for treatment verification, by quantifying positional errors due to EM field interference in typical pelvic BT clinical settings.
Materials And Methods: Dedicated prostate and cervix BT phantoms were imaged with CT. For the cervix phantom, the Utrecht applicator + interstitial catheters were used.
Purpose: To develop and evaluate a fast, automated multi-criterial treatment planning approach for adaptive high-dose-rate (HDR) intracavitary + interstitial brachytherapy (BT) for locally advanced cervical cancer.
Methods And Materials: Twenty-two previously delivered single fraction MRI-based HDR treatment plans (SF) were used to guide training of our in-house system for multi-criterial autoplanning, aiming for an autoplan quality superior to the training plans, while respecting the clinically desired "pear-shaped" dose distribution. Next, the configured algorithm was used to automatically generate treatment plans for 63 other fractions (SF).
We developed a fast and fully-automated, multi-criteria treatment planning workflow for high dose rate brachytherapy (HDR-BT). In this workflow, the patient-CT with catheter reconstructions and dwell positions are imported from the clinical TPS into a novel system for automated dwell time optimisation. The optimised dwell times are then imported into the clinical TPS.
View Article and Find Full Text PDFBackground: Accelerated partial breast irradiation (APBI) is a treatment option for selected early stage breast cancer patients. Some APBI techniques lead to skin toxicity with the skin dose as main risk factor. We hypothesize that a spacer injected between the skin and target volume reduces the skin dose and subsequent toxicity in permanent breast seed implant (PBSI) patients.
View Article and Find Full Text PDFPurpose: Accelerated partial breast irradiation is a treatment option for selected patients with early-stage breast cancer. Some accelerated partial breast irradiation techniques lead to skin toxicity with the skin dose as a main risk factor. Biodegradable spacers are effective and safe in prostate brachytherapy to protect the rectum.
View Article and Find Full Text PDFPurpose: In fractionated high-dose-rate brachytherapy (HDR-BT) for prostate cancer (PCa) with one implant for several fractions, dose delivery relies on reproducibility of catheter positions. However, caudal displacement of implanted catheters does occur between fractions and needs to be corrected. Our protocol prescribes correction of displacements > 3 mm.
View Article and Find Full Text PDFBackground And Purpose: The use of HDR brachytherapy (HDR-BT) as monotherapy for prostate cancer (PC) is increasing worldwide with good tumour control rates and acceptable toxicity. We report our results on toxicity and quality of life (QoL) after HDR-BT monotherapy for PC patients.
Materials And Methods: 166 low- and intermediate-risk localized PC patients were treated with HDR-BT to a total dose of 38Gy in four fractions.
Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions.
View Article and Find Full Text PDFPurpose: To report long-term results of a bladder preservation strategy for muscle-invasive bladder cancer (MIBC) using external beam radiation therapy and brachytherapy/interstitial radiation therapy (IRT).
Methods And Materials: Between May 1989 and October 2011, 192 selected patients with MIBC were treated with a combined regimen of preoperative external beam radiation therapy and subsequent surgical exploration with or without partial cystectomy and insertion of source carrier tubes for afterloading IRT using low dose rate and pulsed dose rate. Data for oncologic and functional outcomes were prospectively collected.
A novel model of the titanium Rotterdam tandem and ovoid applicator is presented. As titanium produces artefacts in MR images, an MR sequence was sought and optimised for visualisation and accurate applicator reconstruction. The mean inter-observer (8 observers) variability for four patients was only 0.
View Article and Find Full Text PDFBackground: There is growing evidence that prostate cancer (PC) cells are more sensitive to high fraction dose in hypofractionation schemes. High-dose-rate (HDR) brachytherapy as monotherapy is established to be a good treatment option for PC using extremely hypofractionated schemes. This hypofractionation can also be achieved with stereotactic body radiotherapy (SBRT).
View Article and Find Full Text PDF