Human-relevant systems that mimic the 3D tumor microenvironment (TME), particularly the complex mechanisms of immuno-modulation in the tumor stroma, in a reproducible and scalable format are of high interest for the drug discovery industry. Here, we describe a novel 3D in vitro tumor panel comprising 30 distinct PDX models covering a range of histotypes and molecular subtypes and cocultured with fibroblasts and PBMCs in planar (flat) extracellular matrix hydrogels to reflect the three compartments of the TME-tumor, stroma, and immune cells. The panel was constructed in a 96-well plate format and assayed tumor size, tumor killing, and T-cell infiltration using high-content image analysis after 4 days of treatment.
View Article and Find Full Text PDFA cell culture platform that enables tissue growth from patients or patient-derived xenograft (PDX) models and assesses sensitivity to approved therapies (e.g., temozolomide) in a clinically relevant time frame would be very useful in translational research and personalized medicine.
View Article and Find Full Text PDFWe report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities.
View Article and Find Full Text PDFThe mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels-water-swollen polymeric networks that act as ECM substrates-has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, "digital plasmonic patterning" (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near-infrared laser, according to a digital (computer-generated) pattern.
View Article and Find Full Text PDFStem cells regulate their fate by binding to, and contracting against, the extracellular matrix. Recently, it has been proposed that in addition to matrix stiffness and ligand type, the degree of coupling of fibrous protein to the surface of the underlying substrate, that is, tethering and matrix porosity, also regulates stem cell differentiation. By modulating substrate porosity without altering stiffness in polyacrylamide gels, we show that varying substrate porosity did not significantly change protein tethering, substrate deformations, or the osteogenic and adipogenic differentiation of human adipose-derived stromal cells and marrow-derived mesenchymal stromal cells.
View Article and Find Full Text PDFLight-assisted 3D direct-printing of biomaterials and cellular-scaffolds has the potential to develop novel lab-on-a-chip devices (LOCs) for a variety of biomedical applications, from drug discovery and diagnostic testing to in vitro tissue engineering and regeneration. Direct-writing describes a broad family of fabrication methods that typically employ computer-controlled translational stages to manufacture structures at multi-length scales. This review focuses on light-assisted direct-write fabrication for generating 3D functional scaffolds with precise micro- and nano-architecture, using both synthetic as well as naturally derived biomaterials.
View Article and Find Full Text PDFThe topographic features of the extracelluar matrix (ECM) lay the foundation for cellular behavior. A novel biofabrication method using a digital-mirror device (DMD), called dynamic optical projection stereolithography (DOPsL) is demonstrated. This robust and versatile platform can generate complex biomimetic scaffolds within seconds.
View Article and Find Full Text PDFStimuli-responsive materials are promising as smart materials for a range of applications. In this work, a photo-crosslinkable, thermoresponsive macromer was electrospun into fibrous scaffolds containing gold nanorods (AuNRs). The resulting fibrous nanocomposites composed of poly(N-isopropylacrylamide-co-polyethylene glycol acrylate) (PNPA) and PEGylated AuNRs were crosslinked and swollen in water.
View Article and Find Full Text PDFStimuli-responsive materials undergo structural changes in response to an external trigger (i.e., pH, heat, or light).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2010
Composites of nanoparticles and polymers are finding wide applications to alter material properties, conductivity, and utility. Here, we show that nano-composites can be designed to heat in the presence of near infrared light. This process is useful in transitioning materials through a transition temperature for a range of applications.
View Article and Find Full Text PDFShape-memory materials (including polymers, metals, and ceramics) are those that are processed into a temporary shape and respond to some external stimuli (e.g., temperature) to undergo a transition back to a permanent shape.
View Article and Find Full Text PDF