Anaesth Crit Care Pain Med
August 2024
Objective: It is now well established that post-intensive care syndrome is frequent in critically ill children after discharge from the pediatric intensive care unit (PICU). Nevertheless, post-intensive care follow-up is highly heterogenous worldwide and is not considered routine care in many countries. The purpose of this viewpoint was to report the reflections of the French PICU society working group on how to implement post-PICU follow-up.
View Article and Find Full Text PDFThe University of North Carolina Symposia on Hemostasis began in 2002, with The First Symposium on Hemostasis with a Special Focus on FVIIa and Tissue Factor. They have occurred biannually since and have maintained the primary goal of establishing a forum for the sharing of outstanding advances made in the basic sciences of hemostasis. The 2024 11th Symposium on Hemostasis will bring together leading scientists from around the globe to present and discuss the latest research related to coagulation factors and platelet biology.
View Article and Find Full Text PDFAnoxia halts oxidative phosphorylation (OXPHOS) causing an accumulation of reduced compounds in the mitochondrial matrix which impedes dehydrogenases. By simultaneously measuring oxygen concentration, NADH autofluorescence, mitochondrial membrane potential and ubiquinone reduction extent in isolated mitochondria in real-time, we demonstrate that Complex I utilized endogenous quinones to oxidize NADH under acute anoxia. C metabolic tracing or untargeted analysis of metabolites extracted during anoxia in the presence or absence of site-specific inhibitors of the electron transfer system showed that NAD regenerated by Complex I is reduced by the 2-oxoglutarate dehydrogenase Complex yielding succinyl-CoA supporting mitochondrial substrate-level phosphorylation (mtSLP), releasing succinate.
View Article and Find Full Text PDFBackground: Postpartum hemorrhage (PPH) is the leading cause of maternal death worldwide. The World Maternal Antifibrinolytic trial showed that antifibrinolytic tranexamic acid (TXA) reduces PPH deaths. Maternal anemia increases the risk of PPH.
View Article and Find Full Text PDFBackground: Staphylocoagulase (SCG) is a virulence factor of , one of the most lethal pathogens of our times. The complex of SCG with prothrombin (SCG/ProT) can clot fibrinogen, and SCG/ProT-induced fibrin and plasma clots have been described to show decreased mechanical and lytic resistance, which may contribute to septic emboli from infected cardiac vegetations. At infection sites, neutrophils can release DNA and histones, as parts of neutrophil extracellular traps (NETs), which in turn favor thrombosis, inhibit fibrinolysis and strengthen clot structure.
View Article and Find Full Text PDFBackground: The Cardio-Renal Pediatric Dialysis Emergency Machine (CA.R.P.
View Article and Find Full Text PDFBackground: Fibrin, the main scaffold of thrombi, is susceptible to citrullination by PAD (peptidyl arginine deiminase) 4, secreted from neutrophils during the formation of neutrophil extracellular traps. Citrullinated fibrinogen (citFg) has been detected in human plasma as well as in murine venous thrombi, and it decreases the lysability and mechanical resistance of fibrin clots.
Objective: To investigate the effect of fibrinogen citrullination on the structure of fibrin clots.
Curr Opin Hematol
September 2022
Purpose Of Review: In the past 5 decades, heparins have been widely used as anticoagulants in the prevention and treatment of thrombosis. Subsequent development of heparin variants of various size and charge facilitated the discovery of their multiple biological actions and nonanticoagulant benefits. Platelet-derived or microbial polyphosphates, as well as DNA released in the course of neutrophil extracellular trap-formation are additional polyanions, which can modulate the development and stability of thrombi associated with cancer or inflammation.
View Article and Find Full Text PDFHuman induced pluripotent stem cell-derived endothelial cells can be candidates for engineering therapeutic vascular grafts. Here, we studied the role of three-dimensional culture on their characteristics and function both and . We found that differentiated hPSC-EC can re-populate decellularized biomatrices; they remain viable, undergo maturation and arterial/venous specification.
View Article and Find Full Text PDFIntroduction: Beyond the three-dimensional fibrin network, the mechanical and lytic stability of thrombi is supported by the matrix of neutrophil extracellular traps (NETs) composed of polyanionic DNA meshwork with attached proteins including polycationic histones. Polyphosphates represent another type of polyanions, which in their linear form are known to enhance the fibrin stabilizing effects of DNA and histones. However, in vivo polyphosphates are also present in the form of nanoparticles (PolyP-NP), the interference of which with the fibrin/NET matrix is poorly characterized.
View Article and Find Full Text PDFIntroduction: The composition of thrombi determines their structure, mechanical stability, susceptibility to lysis, and consequently, the clinical outcome in coronary artery disease (CAD), acute ischemic stroke (AIS), and peripheral artery disease (PAD). Fibrin forms the primary matrix of thrombi intertwined with DNA, derived from neutrophil extracellular traps (NETs), and von Willebrand factor (VWF) bridging DNA and platelets. Here we examined the relative content of fibrin, DNA and VWF in thrombi and analyzed their interrelations and quantitative associations with systemic biomarkers of inflammation and clinical characteristics of the patients.
View Article and Find Full Text PDFWe report on a new approach toward a laser-assisted modification of biocompatible polydimethylsiloxane (PDMS) elastomers relevant to the fabrication of stretchable multielectrode arrays (MEAs) devices for neural interfacing technologies. These applications require high-density electrode packaging to provide a high-resolution integrating system for neural stimulation and/or recording. Medical grade PDMS elastomers are highly flexible with low Young's modulus < 1 MPa, which are similar to soft tissue (nerve, brain, muscles) among the other known biopolymers, and can easily adjust to the soft tissue curvatures.
View Article and Find Full Text PDFBackground: Neutrophil extracellular traps (NETs) containing DNA and histones are expelled from neutrophils in infection and thrombosis. Heparins, anticoagulant polyanions, can neutralize histones with a potential therapeutic advantage in sepsis. Polyphosphates, procoagulant polyanions, are released by platelets and microorganisms.
View Article and Find Full Text PDFcauses localized infections or invasive diseases (abscesses or endocarditis). One of its virulence factors is staphylocoagulase (SCG), which binds prothrombin to form a complex with thrombin-like proteolytic activity and leads to uncontrolled fibrin generation at sites of bacterial inoculation. The aim of this study was to characterize the formation, structure, mechanical properties and lysis of SCG-generated clots.
View Article and Find Full Text PDFThe release of neutrophil extracellular traps (NETs) containing DNA and histones is an essential mechanism in the neutrophil-mediated innate immunity. In thrombi the polyanionic DNA confers mechanical and lytic resistance to fibrin and heparins interfere with the effects of NET components. Heparins are polyanions used not only as therapeutic agents, but they are also released by mast cells at entry sites of pathogens.
View Article and Find Full Text PDFPurpose: In recent years, there has been increasing evidence of an inflammatory component in keratoconus. A key gene in inflammatory processes is the nuclear factor kappa B (NF-κB). NF-κB is a transcription factor for the enzyme nitric oxide synthase (NOS), which is involved with the competing enzyme arginase (Arg) in inflammatory processes.
View Article and Find Full Text PDFNeutrophil extracellular traps (NETs) are DNA and histone-based networks enriched with granule-derived proteins cast out by neutrophils in response to various inflammatory stimuli. Another molecular network, fibrin is the primary protein scaffold that holds both physiological blood clots and pathological thrombi together. There is mounting evidence that NETs and fibrin form a composite network within thrombi: in the past 10 years, a variety of molecular pathways have been revealed that help elucidate the nature of the NET-fibrin interaction.
View Article and Find Full Text PDFPancreatic cancer is associated with a high incidence of venous thromboembolism. Neutrophils have been shown to contribute to thrombosis in part by releasing neutrophil extracellular traps (NET). A recent study showed that increased plasma levels of the NET biomarker, citrullinated histone H3 (H3Cit), are associated with venous thromboembolism in patients with pancreatic and lung cancer but not in those with other types of cancer, including breast cancer.
View Article and Find Full Text PDFIntroduction: The ultrastructure and cellular composition of thrombi has a profound effect on the outcome of acute ischemic stroke (AIS), coronary (CAD) and peripheral artery disease (PAD). Activated neutrophils release a web-like structure composed mainly of DNA and citrullinated histones, called neutrophil extracellular traps (NET) that modify the stability and lysability of fibrin. Here, we investigated the NET-related structural features of thrombi retrieved from different arterial localizations and their interrelations with routinely available clinical data.
View Article and Find Full Text PDFIn the course of thrombosis, platelets are exposed to a variety of activating stimuli classified as 'strong' (e.g. thrombin and collagen) or 'mild' (e.
View Article and Find Full Text PDF