Publications by authors named "Kolesnikov A"

Somatic mosaicism is an important cause of disease, but mosaic and somatic variants are often challenging to detect because they exist in only a fraction of cells. To address the need for benchmarking subclonal variants in normal cell populations, we developed a benchmark containing mosaic variants in the Genome in a Bottle Consortium (GIAB) HG002 reference material DNA from a large batch of a normal lymphoblastoid cell line. First, we used a somatic variant caller with high coverage (300x) Illumina whole genome sequencing data from the Ashkenazi Jewish trio to detect variants in HG002 not detected in at least 5% of cells from the combined parental data.

View Article and Find Full Text PDF

The increasing need to understand and control the environmental impact of chemical processes has revealed the challenge in efficient evaluation of toxicity of the vast number of chemical compounds and their varying effects on biological systems. In this study, we introduce "Build-a-bio-Strip", a novel online service designed to carry out a quick initial analysis of the toxic impact of chemical processes. This platform enables users to automatically generate toxicity characteristics of chemical reactions using their own data on cytotoxicity or median lethal doses of the substances involved or computational predictions based on SMILES strings.

View Article and Find Full Text PDF

Equilibrium and kinetic behavior of adsorption-induced deformation have attracted a lot of attention in the last few decades. The theoretical and experimental works cover activated carbons, coals, zeolites, glasses, etc. However, most of the theoretical works describe only the equilibrium part of the deformation process or focus on the time evolution of the adsorption process.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research shows that cobaltites may serve as a valuable avenue for studying Kitaev physics in honeycomb structures and the Ising model in weakly linked chains.
  • The study investigates the magnetic properties of SrCoGeO using neutron scattering, ab initio methods, and linear spin-wave theory to propose a modified Kitaev model for the interactions in this material.
  • Findings indicate that external magnetic fields can shift the material's magnetic ordering and suggest modified pyroxenes could offer new insights into Kitaev physics.
View Article and Find Full Text PDF
Article Synopsis
  • Accurate genome assemblies are crucial for biological research, but they often have errors due to the technologies used, necessitating polishing steps to correct these mistakes.
  • The new model, DeepPolisher, utilizes Pacbio HiFi read alignments and a method called PHARAOH to improve sequences by accurately addressing haplotypes and correcting errors in areas previously thought to be homozygous.
  • Testing DeepPolisher on 180 assemblies from the Human Pangenome Reference Consortium showed a significant reduction in assembly errors, achieving an average improvement of 54% in error reduction with a predicted Quality Value increase of 3.4.
View Article and Find Full Text PDF

Somatic variant detection is an integral part of cancer genomics analysis. While most methods have focused on short-read sequencing, long-read technologies now offer potential advantages in terms of repeat mapping and variant phasing. We present DeepSomatic, a deep learning method for detecting somatic SNVs and insertions and deletions (indels) from both short-read and long-read data, with modes for whole-genome and exome sequencing, and able to run on tumor-normal, tumor-only, and with FFPE-prepared samples.

View Article and Find Full Text PDF

The study investigated ash development in an arid region, focusing on its invasive spread mechanisms at organismic and ecosystem levels under varying moisture conditions. Conducted in the Northern Caspian region's Volga-Urals interfluve, it examined the effects of arid climate, soil salinity, and limited moisture on plant communities. The features of ash functioning at the organismal and ecosystem levels with permanent and partial deficiency of productive moisture in the soil, as well as with its optimal availability, were investigated.

View Article and Find Full Text PDF

Nanoporous solids have high surface area, so processes at the surface affect the sample as a whole. When guest species adsorb in nanopores, be they molecules adsorbing from the gas phase, or ions adsorbing from solution, they cause material deformation. While often undesired, adsorption- or electrosorption-induced deformation provides a potential for nanoporous materials to be used as actuators.

View Article and Find Full Text PDF

Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration.

View Article and Find Full Text PDF

The retina is uniquely enriched in polyunsaturated fatty acids (PUFAs), which are primarily localized in cell membranes, where they govern membrane biophysical properties such as diffusion, permeability, domain formation, and curvature generation. During aging, alterations in lipid metabolism lead to reduced content of very long-chain PUFAs (VLC-PUFAs) in the retina, and this decline is associated with normal age-related visual decline and pathological age-related macular degeneration (AMD). (Elongation of very-long-chain fatty acids-like 2) encodes a transmembrane protein that produces precursors to docosahexaenoic acid (DHA) and VLC-PUFAs, and methylation level of its promoter is currently the best predictor of chronological age.

View Article and Find Full Text PDF

Long-read sequencing technology has enabled variant detection in difficult-to-map regions of the genome and enabled rapid genetic diagnosis in clinical settings. Rapidly evolving third-generation sequencing platforms like Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are introducing newer platforms and data types. It has been demonstrated that variant calling methods based on deep neural networks can use local haplotyping information with long-reads to improve the genotyping accuracy.

View Article and Find Full Text PDF

The aim of the article is to analyze the legal aspects and mechanisms of confidential medical information protection about an individual in the health care sphere in Ukraine. During the scientific research, various methods of cognition of legal phenomena were used. Among the general scientific approaches, the dialectical method was primarily used, which allowed to identify trends in the development of patient information rights and formulate proposals for improving legislation in the field of medical data protection.

View Article and Find Full Text PDF

The free radical and cytokine statuses of the cornea during its thermal burn and the possibility of its correction by lactoferrin have been studied in Soviet Chinchilla rabbits. The development of a corneal thermal burn was accompanied by the development of oxidative stress (increased levels of TBA-reactive substances and carbonyl derivatives of proteins, decreased activity of SOD and GPx enzymes) and a pronounced inflammatory reaction with increased levels of TNF-1α, IL-10, TGF-1β. The use of lactoferrin had a pronounced therapeutic effect, which was manifested by accelerated healing, prevention of the development of complications (corneal perforations), a decrease in the severity of oxidative stress, an increase in the concentrations of TNF-1α (in the early stages), IL-10 (in the later stages), TGF-1β (throughout the experiment).

View Article and Find Full Text PDF

A series of pyridyl-substituted nitronyl nitroxides was synthesized and structurally characterized. A comprehensive magnetochemical and quantum chemical study of extended raw of the nitroxides with different substituents R in the pyridine fragment was performed. It was shown, that temperature-dependent magnetic properties are determined by the short contacts between nitroxide groups of adjacent molecules as well as between nitroxide group and methyl substituents in the pseudo axial positions of imidazoline fragments.

View Article and Find Full Text PDF

Vibrational spectroscopy allows us to understand complex physical and chemical interactions of molecular crystals and liquids such as ammonia, which has recently emerged as a strong hydrogen fuel candidate to support a sustainable society. We report inelastic neutron scattering measurement of vibrational properties of ammonia along the solid-to-liquid phase transition with high enough resolution for direct comparisons to ab-initio simulations. Theoretical analysis reveals the essential role of nuclear quantum effects (NQEs) for correctly describing the intermolecular spectrum as well as high energy intramolecular N-H stretching modes.

View Article and Find Full Text PDF

Neutron diffraction and spectroscopy offer unique insight into structures and properties of solids and molecular materials. All neutron instruments located at the various neutron sources are distinct, even if their designs are based on similar principles, and thus, they are usually less familiar to the community than commercial X-ray diffractometers and optical spectrometers. Major neutron instruments in the USA, which are open to scientists around the world, and examples of their use in coordination chemistry research are presented here, along with a list of similar instruments at main neutron facilities in other countries.

View Article and Find Full Text PDF
Article Synopsis
  • Cellular retinaldehyde-binding protein (CRALBP) is crucial for the production and delivery of 11-cis-retinaldehyde to photoreceptors in the eye, specifically found in retinal pigment epithelium (RPE) and Müller glia (MG).
  • Research using knockout mice for RPE and MG shows that RPE-CRALBP is vital for efficient visual chromophore regeneration, with RPE-KO mice exhibiting a 15-fold slower regeneration rate and delayed dark adaptation.
  • Additionally, the study reveals significant impairment in cone pigment regeneration in RPE-KO mice, indicating a stronger dependence of cone photoreceptors on RPE compared to MG, emphasizing the need to target RPE cells for CRALBP
View Article and Find Full Text PDF

Most current studies rely on short-read sequencing to detect somatic structural variation (SV) in cancer genomes. Long-read sequencing offers the advantage of better mappability and long-range phasing, which results in substantial improvements in germline SV detection. However, current long-read SV detection methods do not generalize well to the analysis of somatic SVs in tumor genomes with complex rearrangements, heterogeneity, and aneuploidy.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is a common form of retinal dystrophy that can be caused by mutations in any one of dozens of rod photoreceptor genes. The genetic heterogeneity of RP represents a significant challenge for the development of effective therapies. Here, we present evidence for a potential gene-independent therapeutic strategy based on targeting , a transcription factor required for the normal differentiation of rod photoreceptors.

View Article and Find Full Text PDF

Activated carbons are widely used industrial adsorbents due to their attractive sorption properties. Although extensive research on activated carbon has been carried out for several centuries, some aspects of the adsorption-induced deformation of activated carbon remain unclear. The puzzling temperature dependence of the methane-induced deformation of activated carbon is investigated in the present work.

View Article and Find Full Text PDF

X-ray coronary angiography is the most common tool for the diagnosis and treatment of coronary artery disease. It involves the injection of contrast agents into coronary vessels using a catheter to highlight the coronary vessel structure. Typically, multiple 2D X-ray projections are recorded from different angles to improve visualization.

View Article and Find Full Text PDF

This study explores the antiarrhythmic and hypotensive potential of pyridyl-substituted nitronyl nitroxides derivatives, uncovering the crucial role of a single carbon moiety of the pyridine cycle alongside radical and charged oxygen centers of the imidazoline fragment. Notably, the introduction of fluorine atoms diminished the antiarrhythmic effect, while the most potent derivatives featured the nitronyl nitroxide pattern positioned at the third site of the pyridine cycle. Gender-dependent responses were observed in lead compounds L and L, with L inducing temporary bradycardia and hypotension specifically in female rats, and L causing significant blood pressure reduction followed by rebound in females compared to milder effects in males.

View Article and Find Full Text PDF
Article Synopsis
  • Iodine oxides IO (4, 5, 6) have unique structures that blend characteristics of molecular and framework types and are highly reactive, making them suitable for "agent defeat materials."
  • Inelastic neutron scattering experiments were conducted to analyze the phonon density of states in the newly synthesized iodine oxide samples.
  • First-principles calculations were used to predict the thermodynamic properties and phonon density of states, with comparisons to other measurements revealing their unique thermomechanical properties.
View Article and Find Full Text PDF
Article Synopsis
  • The research focused on creating a method to apply metal coatings to polypropylene products through a process influenced by electromagnetic light waves.
  • The technique involves treating the polymer surface with silver nitrate and ascorbic acid to form a conductive silver layer, which requires careful mechanical preparation and activation.
  • By exposing the coated sample to specific light radiation, a photochemical reaction occurs that enhances the reduction of silver, allowing for the production of electrically conductive films in a relatively short time (15-20 minutes).
View Article and Find Full Text PDF
Article Synopsis
  • Long-read sequencing technology is enhancing the detection of genetic variants in complex regions of the genome and facilitating quicker genetic diagnoses in clinical settings.
  • Newer third-generation sequencing platforms, such as those from PacBio and Oxford Nanopore, are rapidly advancing, but traditional variant calling methods struggle with increased data complexity.
  • The developed local haplotype approximation method improves variant calling accuracy and allows DeepVariant to work effectively across various long-read sequencing platforms.
View Article and Find Full Text PDF