OBJECTIVE The objective of this study was to detect 5-aminolevulinic acid (ALA)-induced tumor fluorescence from glioma below the surface of the surgical field by using red-light illumination. METHODS To overcome the shallow tissue penetration of blue light, which maximally excites the ALA-induced fluorophore protoporphyrin IX (PpIX) but is also strongly absorbed by hemoglobin and oxyhemoglobin, a system was developed to illuminate the surgical field with red light (620-640 nm) matching a secondary, smaller absorption peak of PpIX and detecting the fluorescence emission through a 650-nm longpass filter. This wide-field spectroscopic imaging system was used in conjunction with conventional blue-light fluorescence for comparison in 29 patients undergoing craniotomy for resection of high-grade glioma, low-grade glioma, meningioma, or metastasis.
View Article and Find Full Text PDFA diffuse imaging method is presented that enables wide-field estimation of the depth of fluorescent molecular markers in turbid media by quantifying the deformation of the detected fluorescence spectra due to the wavelength-dependent light attenuation by overlying tissue. This is achieved by measuring the ratio of the fluorescence at two wavelengths in combination with normalization techniques based on diffuse reflectance measurements to evaluate tissue attenuation variations for different depths. It is demonstrated that fluorescence topography can be achieved up to a 5 mm depth using a near-infrared dye with millimeter depth accuracy in turbid media having optical properties representative of normal brain tissue.
View Article and Find Full Text PDF