Phenolic acids are known flavonoid metabolites, which typically undergo bioconjugation during phase II of biotransformation, forming sulfates, along with other conjugates. Sulfated derivatives of phenolic acids can be synthesized by two approaches: chemoenzymatically by 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent sulfotransferases or PAPS-independent aryl sulfotransferases such as those from , or chemically using SO complexes. Both approaches were tested with six selected phenolic acids (2-hydroxyphenylacetic acid (2-HPA), 3-hydroxyphenylacetic acid (3-HPA), 4-hydroxyphenylacetic acid (4-HPA), 3,4-dihydroxyphenylacetic acid (DHPA), 3-(4-hydroxyphenyl)propionic acid (4-HPP), and 3,4-dihydroxyphenylpropionic acid (DHPP)) to create a library of sulfated metabolites of phenolic acids.
View Article and Find Full Text PDFThe prochiral 4-(allyloxy)hepta-1,6-diynes, optionally modified in the positions 1 and 7 with an alkyl or ester group, undergo a chemoselective ring-closing enyne metathesis yielding racemic 4-alkenyl-2-alkynyl-3,6-dihydro-2-pyrans. Among the catalysts tested, Grubbs 1st generation precatalyst in the presence of ethene (Mori conditions) gave superior results compared to the more stable Grubbs or Hoveyda-Grubbs 2nd generation precatalysts. This is probably caused by a suppression of the subsequent side-reactions of the enyne metathesis product with ethene.
View Article and Find Full Text PDFAdaptive responses are probably the most effective long-term responses of populations to climate change, but they require sufficient evolutionary potential upon which selection can act. This requires high genetic variance for the traits under selection and low antagonizing genetic covariances between the different traits. Evolutionary potential estimates are still scarce for long-lived, clonal plants, although these species are predicted to dominate the landscape with climate change.
View Article and Find Full Text PDFSpecies response to climate change is influenced by predictable (selective) and unpredictable (random) evolutionary processes. To understand how climate change will affect present-day species, it is necessary to assess their adaptive potential and distinguish it from the effects of random processes. This will allow predicting how different genotypes will respond to forecasted environmental change.
View Article and Find Full Text PDFA detailed DFT study of the mechanism of metathesis of fluoroethene, 1-fluoroethene, 1,1-difluoroethene, cis- and trans-1,2-difluoroethene, tetrafluoroethene and chlorotrifluoroethene catalysed with the Hoveyda-Grubbs 2(nd) generation catalyst was performed. It revealed that a successful metathesis of hydrofluoroethenes is hampered by a high preference for a non-productive catalytic cycle proceeding through a ruthenacyclobutane intermediate bearing fluorines in positions 2 and 4. Moreover, the calculations showed that the cross-metathesis of perfluoro- or perhaloalkenes should be a feasible process and that the metathesis is not very sensitive to stereochemical issues.
View Article and Find Full Text PDFUsing three different approaches, racemic 1-(perfluoroalkyl)ethylamines were synthesized from perfluoroalkyl iodides or perfluoroalkanoic acids, and further transformed to the corresponding N,N'-disubstituted ethane-1,2-diimines and ethane-1,2-diamines as mixtures of diastereoisomers. Their cyclization afforded imidazolium or dihydroimidazolium salts, which led to silver or palladium complexes bearing NHC ligands substituted with secondary polyfluoroalkyl groups. The palladium complexes bearing a throwaway 3-chloropyridine ligand proved to be moderately active in the model Suzuki-Miyaura coupling.
View Article and Find Full Text PDF