It has long been known that the phytohormone auxin plays a promoting role in tuber formation and stress tolerance in potatoes. Our study aimed to identify and characterize the complete sets of auxin-related genes that presumably constitute the entire auxin signaling system in potato ( L.).
View Article and Find Full Text PDFThe main reserve polysaccharide of plants-starch-is undoubtedly important for humans. One of the main sources of starch is the potato tuber, which is able to preserve starch for a long time during the so-called dormancy period. However, accumulated data show that this dormancy is only relative, which raises the question of the possibility of some kind of starch restructuring during dormancy periods.
View Article and Find Full Text PDFAuxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce.
View Article and Find Full Text PDFCytokinins (CKs) were earlier shown to promote potato tuberization. Our study aimed to identify and characterize CK-related genes which constitute CK regulatory system in the core potato () genome. For that, CK-related genes were retrieved from the sequenced genome of the doubled monoploid (DM) Phureja group, classified and compared with Arabidopsis orthologs.
View Article and Find Full Text PDFThe study of the effects of auxins on potato tuberization corresponds to one of the oldest experimental systems in plant biology, which has remained relevant for over 70 years. However, only recently, in the postgenomic era, the role of auxin in tuber formation and other vital processes in potatoes has begun to emerge. This review describes the main results obtained over the entire period of auxin-potato research, including the effects of exogenous auxin; the content and dynamics of endogenous auxins; the effects of manipulating endogenous auxin content; the molecular mechanisms of auxin signaling, transport and inactivation; the role and position of auxin among other tuberigenic factors; the effects of auxin on tuber dormancy; the prospects for auxin use in potato biotechnology.
View Article and Find Full Text PDFPlant Signal Behav
February 2019
Some time ago, potato transformants expressing Agrobacterium-derived auxin synthesis gene tms1 were generated. These tms1-transgenic plants, showing enhanced productivity, were studied for their hormonal status, turnover and responses in comparison with control plants. For this purpose, contents of phytohormones belonging to six different classes (auxins, cytokinins, gibberellins, abscisic, jasmonic and salicylic acids) were determined by a sensitive UPLC-MS/MS method in tubers and shoots of in vitro grown plants.
View Article and Find Full Text PDFPotato is the most economically important non-cereal food crop. Tuber formation in potato is regulated by phytohormones, cytokinins (CKs) in particular. The present work studied CK signal perception in potato.
View Article and Find Full Text PDFEctopic auxin overproduction in transgenic potato leads to enhanced productivity accompanied with concerted and occasional changes in hormonal status, and causing altered response of transformants to exogenous auxin or cytokinin. Previously, we generated potato transformants expressing Agrobacterium-derived auxin synthesis gene tms1 driven by tuber-specific patatin gene promoter (B33-promoter). Here, we studied the endogenous hormonal status and the response to exogenous phytohormones in tms1 transformants cultured in vitro.
View Article and Find Full Text PDFPhytohormones, auxins in particular, play an important role in plant development and productivity. Earlier data showed positive impact of exogenous auxin on potato (Solanum tuberosum L.) tuberization.
View Article and Find Full Text PDF