Publications by authors named "Koksch B"

Glioblastoma (GB) is one of the most lethal types of neoplasms with unique anatomic, physiologic, and pathologic features that usually persist after exposure to standard therapeutic modalities. It is biologically aggressive, and the existence of the blood-brain barrier (BBB) limits the efficacy of standard therapies. In this work, we hypothesize the potential of surface-functionalized ultra-small nanostructured lipid carriers (usNLCs) with charge-switchable cell-penetrating peptides (CPPs) to overcome this biological barrier and improve targeted delivery to brain tumor tissues.

View Article and Find Full Text PDF

Decellularized extracellular matrix (dECM) is an excellent natural source for 3D bioprinting materials due to its inherent cell compatibility. In vat photopolymerization, the use of dECM-based bioresins is just emerging, and extensive research is needed to fully exploit their potential. In this study, two distinct methacryloyl-functionalized, photocrosslinkable dECM-based bioresins were prepared from digested porcine liver dECM through functionalization with glycidyl methacrylate (GMA) or conventional methacrylic anhydride (MA) under mild conditions for systematic comparison.

View Article and Find Full Text PDF

Mucus is a complex biological hydrogel that acts as a barrier for almost everything entering or exiting the body. It is therefore of emerging interest for biomedical and pharmaceutical applications. Besides water, the most abundant components are the large and densely glycosylated mucins, glycoproteins of up to 20 MDa and carbohydrate content of up to 80 wt%.

View Article and Find Full Text PDF

Biocompatible and functionalizable hydrogels have a wide range of (potential) medicinal applications. The hydrogelation process, particularly for systems with very low polymer weight percentages (<1 wt %), remains poorly understood, making it challenging to predict the self-assembly of a given molecular building block into a hydrogel. This severely hinders the rational design of self-assembled hydrogels.

View Article and Find Full Text PDF

This study explores the effectiveness of the antineoplastic agent 5-FU in cancer cells by leveraging the unique properties of cationic antimicrobial peptides (CAMPs) and cell-penetrating peptides (CPPs). Traditional anticancer therapies face substantial limitations, including unfavorable pharmacokinetic profiles and inadequate specificity for tumor sites. These drawbacks often necessitate higher therapeutic agent doses, leading to severe toxicity in normal cells and adverse side effects.

View Article and Find Full Text PDF

Solubilized, gel-forming decellularized extracellular matrix (dECM) is used in a wide range of basic and translational research and due to its inherent bioactivity can promote structural and functional tissue remodeling. The animal-derived protease pepsin has become the standard proteolytic enzyme for the solubilization of almost all types of collagen-based dECM. In this study, pepsin was compared with papain, α-amylase, and collagenase for their potential to solubilize porcine liver dECM.

View Article and Find Full Text PDF

G protein-coupled receptor 83 (GPR83) is a class A G protein-coupled receptor with predominant expression in the cerebellum and proposed function in the regulation of food intake and in anxiety-like behavior. The neuropeptide PEN has been suggested as a specific GPR83 ligand. However, conflicting reports exist about whether PEN is indeed able to bind and activate GPR83.

View Article and Find Full Text PDF

Phytochromes are bistable red/far-red light-responsive photoreceptor proteins found in plants, fungi, and bacteria. Light-activation of the prototypical phytochrome Cph1 from the cyanobacterium sp. PCC 6803 allows photoisomerization of the bilin chromophore in the photosensory module and a subsequent series of intermediate states leading from the red absorbing Pr to the far-red-absorbing Pfr state.

View Article and Find Full Text PDF
Article Synopsis
  • The α-helical coiled coil (CC) is a well-known protein folding structure, and fluorinated amino acids can enhance its stability when strategically placed.
  • This study created a peptide library to test fluorinated amino acids' effects on CC assembly, focusing on their side chain stereochemistry.
  • Results indicated that both steric demand and stereochemistry of fluorinated amino acids influence CC stability and oligomerization, suggesting their potential use for controlling peptide interactions.
View Article and Find Full Text PDF

Three peptides comprising mono-, di-, and tri-fluoroethylglycine (MfeGly, DfeGly, and TfeGly) residues alternating with lysine were digested by readily available proteases (elastase, bromelain, trypsin, and proteinase K). The degree of degradation depended on the enzyme employed and the extent of fluorination. Incubation of the peptides with a microbial consortium from garden soil resulted in degradation, yielding fluoride ions.

View Article and Find Full Text PDF

A de novo designed class of peptide-based fluoropolymers composed of fluorinated aliphatic amino acids as main components is reported. Structural characterization provided insights into fluorine-induced alterations on β-strand to α-helix transition upon an increase in SDS content and revealed the unique formation of PPII structures for trifluorinated fluoropeptides. A combination of circular dichroism, fluorescence-based leaking assays and surface enhanced infrared absorption spectroscopy served to examine the insertion and folding processes into unilamellar vesicles.

View Article and Find Full Text PDF

Structural waters in the S1 binding pocket of β-trypsin are critical for the stabilization of the complex of β-trypsin with its inhibitor bovine pancreatic trypsin inhibitor (BPTI). The inhibitor strength of BPTI can be modulated by replacing the critical lysine residue at the P1 position by non-natural amino acids. We study BPTI variants in which the critical Lys15 in BPTI has been replaced by α-aminobutyric acid (Abu) and its fluorinated derivatives monofluoroethylglycine (MfeGly), difluoroethylglycine (DfeGly), and trifluoroethylglycine (TfeGly).

View Article and Find Full Text PDF

Synthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale.

View Article and Find Full Text PDF

Fluorinated amino acids play an important role in the field of peptide and protein engineering. Although numerous syntheses have been published in recent decades, strategies that allow routine access to fluorinated amino acids on a gram-scale have been poorly described. Furthermore, the described pathways that gain fluorinated amino acids are based on different synthetic strategies, making a uniform approach that uses similar starting materials highly beneficial.

View Article and Find Full Text PDF

Advanced peptide-based nanomaterials composed of self-assembling peptides (SAPs) are of emerging interest in pharmaceutical and biomedical applications. The introduction of fluorine into peptides, in fact, offers unique opportunities to tune their biophysical properties and intermolecular interactions. In particular, the degree of fluorination plays a crucial role in peptide engineering as it can be used to control the characteristics of fluorine-specific interactions and, thus, peptide conformation and self-assembly.

View Article and Find Full Text PDF

Substituting the P position in bovine pancreatic trypsin inhibitor (BPTI) is known to heavily influence its inhibitory activity towards serine proteases. Side-chain fluorinated aliphatic amino acids have been shown to alter numerous properties of peptides and proteins and thus are of interest in the context of BPTI. In our study, we systematically investigated the site-specific incorporation of non-canonical amino acids into BPTI by microwave-assisted solid-phase peptide synthesis (SPPS).

View Article and Find Full Text PDF

The pH low insertion peptide (pHLIP) is a pH-sensitive cell penetrating peptide that transforms from an unstructured coil on the membrane surface at pH > 7, to a transmembrane (TM) α-helix at pH < 5. By exploiting this unique property, pHLIP attracts interest as a potential tool for drug delivery and visualisation of acidic tissues produced by various maladies such as cancer, inflammation, hypoxia etc. Even though the structures of initial and end states of pHLIP insertion have been widely accepted, the intermediate structures in between these two states are less clear.

View Article and Find Full Text PDF

With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient.

View Article and Find Full Text PDF

Organofluorine compounds are known to be toxic to a broad variety of living beings in different habitats, and chemical fluorination has been historically exploited by mankind for the development of therapeutic drugs or agricultural pesticides. On the other hand, several studies so far have demonstrated that, under appropriate conditions, living systems (in particular bacteria) can tolerate the presence of fluorinated molecules (e.g.

View Article and Find Full Text PDF

Antibiotic-resistant microbes have become a global health threat. New delivery systems that enhance the efficacy of antibiotics and/or overcome the resistances can help combat them. In this context, we present , a fibril-forming α-helical coiled-coil peptide that functions as an efficient scaffold for the multivalent presentation of the weakly cationic antimicrobial peptide (AMP) .

View Article and Find Full Text PDF

According to the World Health Organization, cancer is one of the leading causes of morbidity and mortality worldwide. The previously estimated 14 million new cases in the year of 2012 are expected to rise, yearly, over the following 2 decades. Among women, breast cancer is the most common one.

View Article and Find Full Text PDF

The hexapeptide hIAPP (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild-type hIAPP's toxicity to β-cell death. In amyloid research, the role of hydrophobic and aromatic-aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic-aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues.

View Article and Find Full Text PDF

Multicomponent self-assembly of peptides is a powerful strategy to fabricate novel functional materials with synergetic properties that can be used for several nanobiotechnological applications. In the present study, we used a coassembly strategy to generate an injectable ultrashort bioactive peptide hydrogel formed by mixing a dipeptide hydrogelator with a macrophage attracting short chemotactic peptide ligand. Coassembly does not impede hydrogelation as shown by cryo-transmission electron microscopy (cryo-TEM), scanning electron microscopy, and rheology.

View Article and Find Full Text PDF
Article Synopsis
  • The self-assembly of peptides onto gold nanoparticles can create artificial enzymes that show improved catalytic abilities.
  • High peptide density around the nanoparticles enhances their effectiveness through cooperative interactions, leading to faster reaction rates.
  • The review highlights advancements in peptide-gold nanoparticle conjugates, explaining their unique features and potential real-world applications.
View Article and Find Full Text PDF