Publications by authors named "Kokou Dorkenoo"

Ferroelectric domain boundaries are quasi-two-dimensional functional interfaces with high prospects for nanoelectronic applications. Despite their reduced dimensionality, they can exhibit complex non-Ising polarization configurations and unexpected physical properties. Here, the impact of the three-dimensional (3D) curvature on the polarization profile of nominally uncharged 180° domain walls in LiNbO is studied using second-harmonic generation microscopy and 3D polarimetry analysis.

View Article and Find Full Text PDF

We report an extensive study on the coordination behavior of chiral ditopic bridging ligands, which lead to metallosupramolecular polymers in the presence of Zn(II) and Cu(II) in solution. With the help of UV-vis and circular dichroism spectroscopies, we show that the metallopolymer sequence can be controlled by chirality and by the choice of the metal ion. Although the formation of a block metallopolymer proceeds through the assembly of homoleptic complexes, an alternate metallopolymer may be obtained only when heteroleptic complexes are formed.

View Article and Find Full Text PDF

Firefly bioluminescence is a quite efficient process largely used for numerous applications. However, some fundamental photochemical properties of the light emitter are still to be analyzed. Indeed, the light emitter, oxyluciferin, can be in six different forms due to interexchange reactions.

View Article and Find Full Text PDF

The synthesis of a series of push-pull derivatives bearing triphenylamine electron-donating group, cyclopenta[c]thiophen-4,6-dione electron acceptor and various π-linkers including (hetero)aromatic fragments is reported. All target chromophores with systematically varied π-linker structure were further investigated by electrochemistry, absorption measurements, and EFISH experiments in conjunction with DFT calculations. Based on electrochemical and photophysical measurements, when a polarizable 2,5-thienylene moiety is embedded into the chromophore π-backbone the highest intramolecular charge transfer (ICT) is observed.

View Article and Find Full Text PDF

The properties of ferroelectric domain walls can significantly differ from those of their parent material. Elucidating their internal structure is essential for the design of advanced devices exploiting nanoscale ferroicity and such localized functional properties. Here, we probe the internal structure of 180° ferroelectric domain walls in lead zirconate titanate (PZT) thin films and lithium tantalate bulk crystals by means of second-harmonic generation microscopy.

View Article and Find Full Text PDF

We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Förster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing.

View Article and Find Full Text PDF

We have performed multi-photon image reconstructions as well as polarization state analyses inside an artery wall affected by atherosclerosis to investigate the changes in collagen structure. Mice, either healthy or affected by spontaneous atherosclerosis, have been used for this purpose. A two-photon imaging system has been used to investigate atherosclerotic lesions in the ascending aorta of mice.

View Article and Find Full Text PDF

The inscription of light-induced self-written waveguides (LISW) with multimode optical fibers cannot be achieved by using coherent light because of the filamentation phenomena coming from the interferences among the different propagating modes. To suppress this filamentation, we have used two distinct strategies, an incoherent light writing technique and an "on the flow" writing process, to demonstrate the buildup of 1.5 mm long multimode LISWs.

View Article and Find Full Text PDF

We investigated the condition of unique self-written channel and multichannel propagation inside bulk photopolymerizable materials. Light was introduced in the medium by a single-mode optical fiber. At a very low beam power of 5 muW , a unique uniform-channel waveguide without any broadening was obtained by polymerization.

View Article and Find Full Text PDF

We report on the creation of micro-patterns in an oriented nematic elastomer (an artificial muscle material) by photopolymerization of surface aligned nematic liquid crystal monomers. We demonstrate that microscopic techniques are able to create accurate patterns in rubber-like liquid crystal materials. Two approaches, based on one and two-photon excitations respectively, are implemented using a microscope-based setup.

View Article and Find Full Text PDF

We propose to encode optical information through the localized depoling of polar chromophores in thin films of grafted polymeric materials with a femtosecond near IR laser source. This disorientation is promoted through the photoisomerization of the azo-dye component induced by a twophoton absorption process. We show that the resulting localized loss in second harmonic generation efficiency can be exploited in data storage applications.

View Article and Find Full Text PDF

We report experimental and theoretical investigations of multiple laser-line emission in a distributed-feedback dye laser pumped by two coherent optical beams. We have used a Lloyd interferometer configuration with second- and third-order Bragg reflections to study the interaction between the two incident pumps in an organic thin film. We demonstrated theoretically that the number of laser emission lines can be interpreted with reference to the saturation effect in the refractive index.

View Article and Find Full Text PDF

We report on transient laser action during the photopolymerization process in organic thin films of acrylate monomers doped with a laser dye. The emission spectrum was monitored over a period of time in the direction orthogonal to the incident laser beam which is kept at a constant intensity during the experiments. The emission spectra display the signature of laser action after a certain amount of polymerization.

View Article and Find Full Text PDF