Symmetry-breaking phase transitions are central to our understanding of states of matter. When a continuous symmetry is spontaneously broken, new excitations appear that are tied to fluctuations of the order parameter. In superconductors and fermionic superfluids, the phase and amplitude can fluctuate independently, giving rise to two distinct collective branches.
View Article and Find Full Text PDFWe resolve the unexpected and long-standing disagreement between experiment and theory in the Efimovian three-body spectrum of ^{7}Li, commonly referred to as the lithium few-body puzzle. Our results show that the discrepancy arises out of the presence of strong nonuniversal three-body spin-exchange interactions, which enact an effective inflation of the universal Efimov spectrum. This conclusion is obtained from a thorough numerical solution of the quantum mechanical three-body problem, including precise interatomic interactions and all spin degrees of freedom for three alkali-metal atoms.
View Article and Find Full Text PDFIn an atomic Bose-Einstein condensate quenched to the unitary regime, we predict the sequential formation of a significant fraction of condensed pairs and triples. At short distances, we demonstrate the two-body and Efimovian character of the condensed pairs and triples, respectively. As the system evolves, their size becomes comparable to the interparticle distance, such that many-body effects become significant.
View Article and Find Full Text PDFWe study the three-body scattering hypervolume D of atoms whose scattering length a is on the order of or smaller than the typical range r_{vdW} of the van der Waals attraction. We find that the real part of D behaves universally in this weakly interacting regime (|a|/r_{vdW}≲1) in the absence of trimer resonances. This universality originates from hard-spherelike collisions that dominate elastic three-body scattering.
View Article and Find Full Text PDFTransport of excitations along proteins can be formulated in a quantum physics context, based on the periodicity and vibrational modes of the structures. Numerically exact solutions of the corresponding equations are very challenging to obtain on classical computers. Approximate solutions based on the Davydov ansatz have demonstrated the possibility of stabilized solitonic excitations along the protein, however, experimentally these solutions have never been directly observed.
View Article and Find Full Text PDFWe use an atomic fountain clock to measure quantum scattering phase shifts precisely through a series of narrow, low-field Feshbach resonances at average collision energies below 1 μK. Our low spread in collision energy yields phase variations of order ±π/2 for target atoms in several F, m_{F} states. We compare them to a theoretical model and establish the accuracy of the measurements and the theoretical uncertainties from the fitted potential.
View Article and Find Full Text PDFSeveral recent experiments have established by measuring the Mandel Q parameter that the number of Rydberg excitations in ultracold gases exhibits sub-Poissonian statistics. This effect is attributed to the Rydberg blockade that occurs due to the strong interatomic interactions between highly excited atoms. Because of this blockade effect, the system can end up in a state in which all particles are either excited or blocked: a jamming limit.
View Article and Find Full Text PDFWe report on measurements of three-body recombination loss rates in an ultracold gas of ^{7}Li atoms in the extremely nonuniversal regime where the two-body scattering length vanishes. We show that the loss rate coefficient is well defined and can be described by two-body parameters only: the scattering length a and the effective range R_{e}. We find the rate to be energy independent, and, by connecting our results with previously reported measurements in the universal limit, we cover the behavior of the three-body recombination rate in the whole range from weak to strong two-body interactions.
View Article and Find Full Text PDFWe identify a relation between the dynamics of ultracold Rydberg gases in which atoms experience a strong dipole blockade and spontaneous emission, and a stochastic process that models certain wireless random-access networks. We then transfer insights and techniques initially developed for these wireless networks to the realm of Rydberg gases, and explain how the Rydberg gas can be driven into crystal formations using our understanding of wireless networks. Finally, we propose a method to determine Rabi frequencies (laser intensities) such that particles in the Rydberg gas are excited with specified target excitation probabilities, providing control over mixed-state populations.
View Article and Find Full Text PDFThe h-index has received an enormous attention for being an indicator that measures the quality of researchers and organizations. We investigate to what degree authors can inflate their h-index through strategic self-citations with the help of a simulation. We extended Burrell's publication model with a procedure for placing self-citations, following three different strategies: random self-citation, recent self-citations and h-manipulating self-citations.
View Article and Find Full Text PDFPhys Rev Lett
September 2010
We investigate three-body recombination loss across a Feshbach resonance in a gas of ultracold 7Li atoms prepared in the absolute ground state and perform a comparison with previously reported results of a different nuclear-spin state [N. Gross, Phys. Rev.
View Article and Find Full Text PDFWe study the widths of interspecies Feshbach resonances in a mixture of the fermionic quantum gases 6Li and 40K. We develop a model to calculate the width and position of all available Feshbach resonances for a system. Using the model, we select the optimal resonance to study the {6}Li/{40}K mixture.
View Article and Find Full Text PDFWe report on experimental evidence of universality in ultracold 7Li atoms' three-body recombination loss in the vicinity of a Feshbach resonance. We observe a recombination minimum and an Efimov resonance in regions of positive and negative scattering lengths, respectively, which are connected through the pole of the Feshbach resonance. Both observed features lie deeply within the range of validity of the universal theory, and we find that the relations between their properties, i.
View Article and Find Full Text PDFThe scattering length is commonly used to characterize the strength of ultracold atomic interactions, since it is the leading parameter in the low-energy expansion of the scattering phase shift. Its value can be modified via a magnetic field, by using a Feshbach resonance. However, the effective range term, which is the second parameter in the phase shift expansion, determines the width of the resonance and gives rise to important properties of ultracold gases.
View Article and Find Full Text PDFWe report on the observation of Feshbach resonances in an ultracold mixture of two fermionic species, (6)Li and (40)K. The experimental data are interpreted using a simple asymptotic bound state model and full coupled channels calculations. This unambiguously assigns the observed resonances in terms of various s- and p-wave molecular states and fully characterizes the ground-state scattering properties in any combination of spin states.
View Article and Find Full Text PDFWe report Bose-Einstein condensation of weakly bound 6Li2 molecules in a crossed optical trap near a Feshbach resonance. We measure a molecule-molecule scattering length of 170(+100)(-60) nm at 770 G, in good agreement with theory. We study the 2D expansion of the cloud and show deviation from hydrodynamic behavior in the BEC-BCS crossover region.
View Article and Find Full Text PDFWe create weakly bound Li2 molecules from a degenerate two component Fermi gas by sweeping a magnetic field across a Feshbach resonance. The atom-molecule transfer efficiency can reach 85% and is studied as a function of magnetic field and initial temperature. The bosonic molecules remain trapped for 0.
View Article and Find Full Text PDFWe investigate the strongly interacting regime in an optically trapped 6Li Fermi mixture near a Feshbach resonance. The resonance is found at 800(40) G in good agreement with theory. Anisotropic expansion of the gas is interpreted by collisional hydrodynamics.
View Article and Find Full Text PDFPhys Rev Lett
October 2002
In a recent experiment, a Feshbach scattering resonance was exploited to observe Ramsey fringes in a 85Rb Bose-Einstein condensate. The oscillation frequency corresponded to the binding energy of the molecular state. We show that the observations are remarkably consistent with predictions of a resonance field theory in which the fringes arise from oscillations between atoms and molecules.
View Article and Find Full Text PDFCombining the measured binding energies of four of the most weakly bound rovibrational levels of the 87Rb2 molecule with results of two other recent high-precision experiments, we obtain exceptionally strong constraints on the atomic interaction parameters in a highly model independent analysis. The comparison of (85)Rb and (87)Rb data, where the two isotopes are related by a mass scaling procedure, plays a crucial role. We predict scattering lengths, clock shifts, and Feshbach resonances with an unprecedented level of accuracy.
View Article and Find Full Text PDFWe predict a direct and observable signature of the superfluid phase in a quantum Fermi gas, in a temperature regime already accessible in current experiments. We apply the theory of resonance superfluidity to a gas confined in a harmonic potential and demonstrate that a significant increase in density will be observed in the vicinity of the trap center.
View Article and Find Full Text PDFWe consider the superfluid phase transition that arises when a Feshbach resonance pairing occurs in a dilute Fermi gas. We apply our theory to consider a specific resonance in potassium ((40)K), and find that for achievable experimental conditions, the transition to a superfluid phase is possible at the high critical temperature of about 0.5T(F).
View Article and Find Full Text PDF