We synthesized a new silyl porphyrin derivative conjugated with 6-deoxy-6-sulfo-α-d-glucopyranose (SGlc). Conjugation with SGlc improved A549 cellular uptake without significant changes in the photophysical and photochemical properties and subcellular localization. This improved cellular uptake led to enhanced photodynamic activity.
View Article and Find Full Text PDFAtherosclerosis is a major cause of cerebral and cardiovascular diseases. Intravascular plaques, a well-known pathological finding of atherosclerosis, have a necrotic core composed of macrophages and dead cells. Intraplaque macrophages, which are classified into various subtypes, play key roles in maintenance of normal cellular microenvironment.
View Article and Find Full Text PDFPain transmission and processing in the nervous system are modulated by various biologically active substances, including lysophospholipids, through direct and indirect actions on the somatosensory pathway. Lysophosphatidylglucoside (LysoPtdGlc) was recently identified as a structurally unique lysophospholipid that exerts biological actions via the G protein-coupled receptor GPR55. Here, we demonstrated that GPR55-knockout (KO) mice show impaired induction of mechanical pain hypersensitivity in a model of spinal cord compression (SCC) without the same change in the models of peripheral tissue inflammation and peripheral nerve injury.
View Article and Find Full Text PDFThe glycosylation of unprotected carbohydrates has emerged as an area of significant interest because it obviates the need for long reaction sequences involving protecting-group manipulations. Herein, we report the one-pot synthesis of anomeric glycosyl phosphates through the condensation of unprotected carbohydrates with phospholipid derivatives while retaining high stereo- and regioselective control. The anomeric center was activated using 2-chloro-1,3-dimethylimidazolinium chloride to facilitate condensation with glycerol-3-phosphate derivatives in an aqueous solution.
View Article and Find Full Text PDF1-stearoyl (18:0)-2-arachidoyl (20:0)-sn-glycero-3-phospho-ß-D-glucoside (Phosphatidylglucoside or PtdGlc) was synthesized by direct coupling of D-glucose with the phosphate group of phosphatidic acid (18:0, 20:0). Selective in situ activation of the anomeric center of D-glucose by 2-chloro-1,3-dimethylimidazolinium chloride (DMC) in aqueous media allows the omission of protecting groups while furnishing the required ß-phosphate linkage with high selectivity. The described method is suitable to access PtdGlc in mg scale utilizing a simple two step purification protocol.
View Article and Find Full Text PDFSecretory proteins and lipids are biosynthesized in the endoplasmic reticulum (ER). The "protein quality control" system (PQC) monitors glycoprotein folding and supports the elimination of terminally misfolded polypeptides. A key component of the PQC system is Uridine diphosphate glucose:glycoprotein glucosyltransferase 1 (UGGT1).
View Article and Find Full Text PDFSulfoquynovosylacyl propanediol (SQAP; 1) has been developed as a radiosensitizer (anti-cancer agent) for solid tumors, but it was easily cleaved in vivo and had a problem of short residence time. We synthesized a novel compound of a SQAP derivative (3-octadecanoxypropyl 6-deoxy-6-sulfo-α-d-glucopyranoside: ODSG; 2) to solve these problems not easily cleaved by lipase. ODSG (2) cytotoxicity was investigated in vitro, resulting in low toxicity like SQAP (1).
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2021
Neutrophils undergo spontaneous apoptosis within 24-48 h after leaving bone marrow. Apoptotic neutrophils are subsequently phagocytosed and cleared by macrophages, thereby maintaining neutrophil homeostasis. Previous studies have demonstrated involvement of lysophosphatidylglucoside (lysoPtdGlc), a degradation product of PtdGlc, in modality-specific repulsive guidance of spinal sensory axons, via its specific receptor GPR55.
View Article and Find Full Text PDFG protein-coupled receptor 55 (GPR55) is highly expressed in brain and peripheral nervous system. Originally deorphanized as a cannabinoid receptor, recently GPR55 has been described as a lysophospholipid-responsive receptor, specifically toward lysophosphatidylinositol and lysophosphatidyl-β-d-glucoside (LysoPtdGlc). To characterize lysolipid-GPR55 interaction, synthetic access to LysoPtdGlc and selected analogues was established utilizing a phosphorus(III)-based chemical approach.
View Article and Find Full Text PDF