Publications by authors named "Koki Kamizaki"

Skeletal muscle mesenchymal progenitors (MPs) play a critical role in supporting muscle regeneration. However, under pathological conditions, they contribute to intramuscular adipose tissue accumulation, involved in muscle diseases, including muscular dystrophy and sarcopenia, age-related muscular atrophy. How MP fate is determined in these different contexts remains unelucidated.

View Article and Find Full Text PDF

Ror-family receptors, Ror1 and Ror2, are type I transmembrane proteins that possess an extracellular cysteine-rich domain, which is conserved throughout the Frizzled-family receptors and is a binding site for Wnt ligands. Both Ror1 and Ror2 function primarily as receptors or co-receptors for Wnt5a to activate the β-catenin-independent, non-canonical Wnt signaling, thereby regulating cell polarity, migration, proliferation, and differentiation depending on the context. Ror1 and Ror2 are expressed highly in many tissues during embryogenesis but minimally or scarcely in adult tissues, with some exceptions.

View Article and Find Full Text PDF
Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis, and while some molecules are connected to its progression, many underlying mechanisms remain unclear.
  • The study highlights that higher expression levels of Ror1 and Wnt5b—specific proteins—are linked to worse outcomes in PDAC patients and are notably found in PANC-1 cancer cells.
  • Research shows that reducing levels of Ror1 or Wnt5b in these cells slows down their growth both in lab conditions and in live models, suggesting that the Wnt5b-Ror1 signaling pathway is crucial for the cancer's progression.
View Article and Find Full Text PDF

Rho in filopodia (Rif), a member of the Rho family of small GTPases, induces filopodia formation primarily on the dorsal surface of cells; however, its function remains largely unclear. Here, we show that Rif interacts with Ror1, a receptor for Wnt5a that can also induce dorsal filopodia. Our immunohistochemical analysis revealed a high frequency of coexpression of Ror1 and Rif in lung adenocarcinoma.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a refractory cancer that shows recurrence due to the acquisition of resistance to anticancer drugs, including cisplatin. However, the molecular mechanism underlying the acquisition of cisplatin resistance by cancer cells remains largely unknown. In the present study, two sets of ovarian endometrioid carcinoma cell lines were used: The parental A2780 cell line, the OVK18 cell line, and their derived cisplatin‑resistant cells.

View Article and Find Full Text PDF

Coenzyme Q10 (CoQ10) promotes wound healing and . However, the molecular mechanisms underlying the promoting effects of CoQ10 on wound repair remain unknown. In the present study, we investigated the molecular mechanisms through which CoQ10 induces wound repair using a cellular wound-healing model.

View Article and Find Full Text PDF

The Ror-family proteins, Ror1 and Ror2, act as receptors or co-receptors for Wnt5a and its related Wnt proteins to activate non-canonical Wnt signaling. Ror1 and/or Ror2-mediated signaling plays essential roles in regulating cell polarity, migration, proliferation and differentiation during developmental morphogenesis, tissue-/organo-genesis and regeneration of adult tissues following injury. Ror1 and Ror2 are expressed abundantly in developing tissues in an overlapping, yet distinct manner, and their expression in adult tissues is restricted to specific cell types such as tissue stem/progenitor cells.

View Article and Find Full Text PDF

Accumulating evidence demonstrates that bone marrow (BM)-derived mesenchymal stem cells (MSCs) play critical roles in regulating progression of various types of cancer. We have previously shown that Wnt5a-Ror2 signaling in MSCs induces expression of CXCL16, and that CXCL16 secreted from MSCs then binds to its cognate receptor CXCR6 on the surface of an undifferentiated gastric cancer cell line MKN45 cells, eventually leading to proliferation and migration of MKN45 cells. However, it remains unclear about a possible involvement of another (other) cytokine(s) in regulating progression of gastric cancer.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma of the lung is a type of cancer associated with a poor prognosis and is characterized by the presence of tumor cells with a ring‑like glandular structure floating within alveolar spaces. In the present study, the association between its morphological, biochemical and immunohistochemical characteristics, and malignancy was investigated using the KU‑Lu‑MPPt3 cell line established from a patient with MIP adenocarcinoma. Two subpopulations of KU‑Lu‑MPPt3 cells, namely adhesive (AD) and clumpy and suspended (CS) cells, were prepared and subjected to DNA microarray, reverse transcription‑quantitative PCR, western blot and immunostaining analyses.

View Article and Find Full Text PDF

Ror2 (receptor tyrosine kinase like orphan receptor 2) is highly expressed in various types of cancers; in the majority of these cancers, Ror2 expression is associated with more aggressive disease states. Recently, it has been reported that Ror2 is highly expressed in human papilloma virus (HPV)‑positive head and neck squamous cell cancer (HNSCC) cell lines, presumably indicating that Ror2 plays a critical role in HPV‑related cancers. However, the function of Ror2 in HPV‑positive HNSCC is currently unknown.

View Article and Find Full Text PDF

The Ror-family receptor tyrosine kinases (RTKs), consisting of Ror1 and Ror2, play crucial roles in morphogenesis and formation of various tissues/organs, including the bones and skeletal muscles, the so-called musculoskeletal system, during embryonic development, by acting as receptors or coreceptors for a noncanonical Wnt protein Wnt5a. Furthermore, several lines of evidence have indicated that Ror1 and/or Ror2 play critical roles in the regeneration and maintenance of the musculoskeletal system in adults. Considering the anatomical and functional relationship between the skeleton and skeletal muscles, their structural and functional association might be tightly regulated during their embryonic development, development after birth, and their regeneration after injury in adults.

View Article and Find Full Text PDF

The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1β, after injury and that inhibition of TNF-α and IL-1β by neutralizing antibodies suppresses expression of and in injured muscles.

View Article and Find Full Text PDF

Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion.

View Article and Find Full Text PDF