Color-blind is a generic disability whereby the affected individuals are not given the opportunity to benefit from the various functions provided by color that would impact humans physically and psychologically. Although this disability is not fatal, it brought plenty of turbulence in the affected individuals' daily activities. This paper aims to develop a system for recognizing and detecting colors of clothes in images, improve accuracy by using advanced algorithms to handle lighting variations, and provide color matching recommendations to assist color-blind individuals in making informed choices when purchasing shirts.
View Article and Find Full Text PDFAs healthcare systems transition into an era dominated by quantum technologies, the need to fortify cybersecurity measures to protect sensitive medical data becomes increasingly imperative. This paper navigates the intricate landscape of post-quantum cryptographic approaches and emerging threats specific to the healthcare sector. Delving into encryption protocols such as lattice-based, code-based, hash-based, and multivariate polynomial cryptography, the paper addresses challenges in adoption and compatibility within healthcare systems.
View Article and Find Full Text PDFAgriculture is a leading sector in international initiatives to mitigate climate change and promote sustainability. This article exhaustively examines the removals and emissions of greenhouse gases (GHGs) in the agriculture industry. It also investigates an extensive range of GHG sources, including rice cultivation, enteric fermentation in livestock, and synthetic fertilisers and manure management.
View Article and Find Full Text PDFIntroduction White blood cells (WBCs) are immunity cells which fight against viruses and bacteria in the human body. Microscope images of captured WBCs for processing and analysis are important to interpret the body condition. At present, there is no robust automated method to segment and classify WBCs images with high accuracy.
View Article and Find Full Text PDFIn recent years, Recommender System (RS) research work has covered a wide variety of Artificial Intelligence techniques, ranging from traditional Matrix Factorization (MF) to complex Deep Neural Networks (DNN). Traditional Collaborative Filtering (CF) recommendation methods such as MF, have limited learning capabilities as it only considers the linear combination between user and item vectors. For learning non-linear relationships, methods like Neural Collaborative Filtering (NCF) incorporate DNN into CF methods.
View Article and Find Full Text PDF